首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the grid-free smoothed particle hydrodynamics (SPH) method has been used to predict the amount of oxide generated during a furnace tipping process, where the metal is poured into a launder. The free surface modelling capability of SPH and 3D visualisation of the fluid flow leads to a better understanding of the flow characteristics during the furnace tipping phase of the operation. Experimental mass flow rate measurements are used to validate the SPH simulation predictions. The relative amount of oxide generated during the furnace tipping phase and the phase of metal discharge from the ingot wheel are then predicted. Results indicate that the furnace tipping process can lead to as much as two thirds of the total oxide generated during melt transfer from the furnace to the ingot. This suggests that optimisation of furnace design and the tipping process could lead to significant improvements in the quality of the downstream products, such as ingot castings.  相似文献   

2.
讨论了基于光滑粒子流体动力学(SPH)的压铸充型模拟的实施过程。建立了一种区分流体粒子和入流粒子的入流边界条件。对人工黏度和移动最小二乘法在处理压力振荡中的作用进行了对比。对最终模型在模拟压铸二维与三维的充型过程进行了验证。将SPH和有限差分的模拟结果与实验结果进行了对比研究。结果显示SPH与实验更为吻合,表明了SPH在描述充型过程流态方面的有效性与精度。  相似文献   

3.
This work presents a new approach to the thermal modelling of direct laser interference patterning (DLIP). The spatial and temporal evolution of the temperature distribution within metallic substrates, which are irradiated by nanosecond pulses during the DLIP process, is computed by means of a smoothed particle hydrodynamics (SPH) method. The developed model considers the conversion of laser energy into heat within a very thin surface layer, heat conduction into the bulk material and the effect of latent heat during involved phase transformations. The importance of proper determination of characteristic SPH parameters and adequate spatial resolution of the computational domain on the accuracy of the numerical solution is discussed in detail. The computed temperature distributions are in good agreement with the results of a previously developed FEM model and correspond very well to simultaneously performed experimental investigations.  相似文献   

4.
Abstract

The present study reports on the extension of smoothed particle hydrodynamics (SPH) of high pressure die casting to realistic three-dimensional components. Predictions of the isothermal filling of a moderately complex die in 3D demonstrates the importance of flow separation off corners, edges and faces with high curvature and the non-intuitive order of fill resulting from complicated back flows. The free surface behaviour involves significant transient void formation and free surface fragmentation. The predictions are shown to be insensitive to the Reynolds numbers. Their accuracy is confirmed by comparing simulations with coarser and finer resolutions.  相似文献   

5.
Tool-edge geometry has significant effects on the cutting process, as it affects cutting forces, stresses, temperatures, deformation zone, and surface integrity. An Arbitrary-Lagrangian–Eulerian (A.L.E.) finite element model is presented here to simulate the effects of cutting-edge radius on residual stresses (R.S.) when orthogonal dry cutting austenitic stainless steel AISI 316L with continuous chip formation. Four radii were simulated starting with a sharp edge, with a finite radius, and up to a value equal to the uncut chip thickness. Residual stress profiles started with surface tensile stresses then turned to be compressive at about 140 μm from the surface; the same trend was found experimentally. Larger edge radius induced higher R.S. in both the tensile and compressive regions, while it had almost no effect on the thickness of tensile layer and pushed the maximum compressive stresses deeper into the workpiece. A stagnation zone was clearly observed when using non-sharp tools and its size increased with edge radius. The distance between the stagnation-zone tip and the machined surface increased with edge radius, which explained the increase in material plastic deformation, and compressive R.S. when using larger edge radius. Workpiece temperatures increased with edge radius; this is attributed to the increase in friction heat generation as the contact area between the tool edge and workpiece increases. Consequently, higher tensile R.S. were induced in the near-surface layer. The low thermal conductivity of AISI 316L restricted the effect of friction heat to the near-surface layer; therefore, the thickness of tensile layer was not affected.  相似文献   

6.
A new theory to determine the dynamic cutting coefficients from steady state cutting data for three dimensional cutting has been developed. It is based on direct measurements of cutting forces, without any hypothesis relating to the steady state cutting. The experimental results show fairly good coincidence with the theoretical prediction of the stability limit.  相似文献   

7.
在光纤激光切割厚板的工艺参数采集过程中,使用正交试验的方法,在最短的时间获得最优的切割工艺参数,有效、合理地减少试验时间与成本。  相似文献   

8.
Identification of 3-D cutting dynamics requires an expensive experimental set-up and complicated analysis. Recently, time series methods were used to model cutting dynamics. This approach allows a simpler experimental set-uup and estimates the discrete transfer functions used for simulation and/or calculation of frequency domain characteristics of the system. In this paper, the use of neural networks is proposed to model the 3-D cutting dynamics. Neural networks can be trained using the same experimental set-up used for the time series methods. However, several time series models (for different cutting speeds) can be represented with a single neural network, and cutting forces can be studied for varying cutting speed conditions. Also, four neural networks were used to store the frequency domain characteristics of the thrust direction cutting force. In this study, the estimation errors for the neural networks were less than 7% of the defined range (the difference between the maximum and minimum of the data).  相似文献   

9.
An analytical or experimental method is often unable to explore the behavior of a metal matrix composite (MMC) during machining due to the complex deformation and interactions among particles, tool and matrix. This paper investigates the matrix deformation and tool–particle interactions during machining using the finite element method. Based on the geometrical orientations, the interaction between tool and particle reinforcements was categorized into three scenarios: particles along, above and below the cutting path. The development of stress and strain fields in the MMC was analyzed and physical phenomena such as tool wear, particle debonding, displacements and inhomogeneous deformation of matrix material were explored. It was found that tool–particle interaction and stress/strain distributions in the particles/matrix are responsible for particle debonding, surface damage and tool wear during machining of MMC.  相似文献   

10.
基于正交切削模型的铣削加工残余应力预测方法   总被引:1,自引:0,他引:1  
提出了一种基于正交切削模型的铣削加工残余应力预测方法.针对直齿圆柱铣刀建立了铣削加工的平面应变有限元模型,并通过分段曲线限定不同温度下应力与应变间的关系,详细表明材料的加工硬化规律.有限元模型采用相关的实验数据进行了验证.在铣削用量确定的前提下,通过对航空铝合金70507451进行加工模拟,研究了直齿圆柱铣刀前角对已加工表面残余应力的影响.  相似文献   

11.
The influence of changing the plan approach angle on cutting force components, chip length ratio and tool life is deduced for the particular case of orthogonal cutting with a tool of zero rake angle. Experimental data obtained with three steels are shown to be in good accord with theoretical deduction.  相似文献   

12.
13.
In order to represent actual cutting process conditions, an in-process tribometer is examined to measure friction during orthogonal turning process at cutting speeds up to 300 m/min. The tribometer consists of a spring preloaded tungsten carbide pin with spherical tip mounted behind the cutting edge and rubbing on the freshly generated workpiece surface. The pin preload is set according to feed force. A 3D-force measuring device in the fixation of the pin allows evaluating friction coefficient from tangential and normal forces. Experiments show strongly different results when contacting fresh and oxidized surfaces and decreasing friction coefficient with increasing cutting speed.  相似文献   

14.
15.
Not all the forces measured during a cutting operation contribute to chip formation. Some fraction of the forces are parasitic forces such as ploughing or flank forces, which make no contribution to the chip formation process. It its desirable to measure these forces so that the mechanics of the cutting process can be interpreted correctly. However, a possibly more important reason is that parasitic forces are known to increase with worn tools. Thus if the parasitic force can be measured directly, or extracted from the overall measured forces it may be useful for in-process tool condition monitoring provided appropriate calibration of the relationship between the parasitic force and cutting tool dullness has been performed.A method for measuring the parasitic forces in orthogonal cutting is proposed and shown to permit calculating workpiece material properties which are consistent with those measured using other techniques. Another technique for evaluating parasitic forces which was previously shown to yield inaccurate results for zinc was re-evaluated for Delrin® and again resulted in incorrect results.  相似文献   

16.
The paper presents a new approach for predicting micro-milling cutting forces using the finite element method (FEM). The trajectory of the tool and the uncut chip thickness for different micro-milling parameters (cutting tool radius, feed rate, spindle angular velocity and number of flutes) are determined and used for predicting the cutting forces in micro-milling. The run-out effect is also taken into account. An orthogonal FE model is developed. A number of FE analyses (FEA) are performed at different uncut chip thicknesses (0–20 μm) and velocities (104.7–4723 mm/s) for AISI 4340 steel. Based on the FE results, the relationship between the cutting forces, uncut chip thickness and cutting velocity has been described by a non-linear equation proposed by the authors. The suggested equation describes the ploughing and shearing dominant cutting forces. The micro-milling cutting forces have been determined by using the predicted forces from the orthogonal cutting FE model and the calculated uncut chip thickness. Different feed rates and spindle angular velocities have been investigated and compared with experimentally obtained results. The predicted and the measured forces are in very good agreement.  相似文献   

17.
Prediction of ball-end milling forces from orthogonal cutting data   总被引:13,自引:0,他引:13  
The mechanics of cutting with helical ball-end mills are presented. The fundamental cutting parameters, the yield shear stress, average friction coefficient on the rake face and shear angle are measured from a set of orthogonal cutting tests at various cutting speeds and feeds. The cutting forces are separated into edge or ploughing forces and shearing forces. The helical flutes are divided into small differential oblique cutting edge segments. The orthogonal cutting parameters are carried to oblique milling edge geometry using the classical oblique transformation method, where the chip flow angle is assumed to be equal to the local helix angle. The cutting force distribution on the helical ball-end mill flutes is accurately predicted by the proposed method, and the model is validated experimentally and statistically by conducting more than 60 ball-end milling experiments.  相似文献   

18.
An electron beam lithography technique has been used to produce microgrids in order to measure local plastic strains, induced during an orthogonal cutting process, at the microscopic scale in the shear zone and under the machined surface. Microgrids with a 10 μm pitch and a line width less than 1 μm have been printed on the polished surface of an aluminium alloy AA 5182 to test the applicability of the technique in metal cutting operations. Orthogonal cutting tests were carried out at 40 mm/s. Results show that the distortion of the grids could successfully be used to compute plastic strains due to orthogonal cutting with higher accuracy compared to other techniques reported in the literature. Strain maps of the machined specimens have been produced and show high-strain gradients very close to the machined surface with local values reaching 2.2. High-resolution strain measurements carried out in the primary deformation zone also provide new insight into the material deformation during the chip formation process.  相似文献   

19.
《CIRP Annals》2020,69(1):61-64
In machining, the thermal load significantly influences the tool wear and the workpiece quality, thus limiting the productivity. Therefore, a new experimental setup for the high-speed measurement of the rake face temperature in orthogonal cutting without substantially affecting the chip formation was developed. The investigations focus on the influence of different rake face preparation methods and cutting parameters on the temperature of the rake face, measured in the immediate vicinity of the cutting edge. The presented results significantly improve the understanding of the process and provide new insights for the tool development and the validation of cutting models.  相似文献   

20.
Numerical approaches to high-speed machining are necessary to increase the productivity and to optimise the tool wear and the residual stresses. In order to apply such approaches, rheological behaviour of the antagonists and friction model of interfaces have to be correctly determined. The existing numerical approaches that are used with the current friction models do not lead to good correlations of the process variables, such as the cutting forces or the tool–chip contact length. This paper proposes a new approach for characterizing the friction behaviour at the tool–chip interface in the zone near the cutting edge. An experimental device is designed to simulate the friction behaviour at the tool–chip interface. During this upsetting-sliding test, an indenter rubs in a specimen with a constant speed, generating a residual friction track. Contact pressure and friction coefficient are determined from the test’s numerical model and are then used to identify the friction data according to the interface temperature and the sliding velocity. These initial findings can be further developed for implementation in FEA machining models in order to increase the productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号