首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The citrate gel of (Bi, Pb), Sr, Ca and Cu and the (Bi, Pb)-Sr-Ca-Cu-(O, F) superconductor were prepared using citrate as the organic complex agent and 2-ethyl hexanol as the dehydrating agent. The starting material was a high-purity nitrate solution containing the desired ions in the appropriate atomic ratio. The optimum temperature and pH to obtain the homogeneous gel precursor were estimated. IR and DSC were employed to study the thermal decomposition and the calcination of the precursor material. After the calcined powder was sintered, a nearly single-phase (Bi, Pb)2Sr2Ca2Cu3O x superconductor with the transition temperature 105 K was synthesized. The effect of the doping of Pb and F was also studied in the paper. Synopsis of the first author Yin Zhoulan, associated professor, born in 1965, received Ph D degree in 1994, professional interest is physical chemistry in metallurgy and materials.  相似文献   

2.
The microstructure and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3(x=0,0.04,0.08,0.12,0.16) ceramic system were investigated.The Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics were prepared by the traditional solid-state reaction method and were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and Raman spectrometer.The sintering ability and dielectric properties of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 were found to be improved with the doping of Mn4+ and W6+ ions.The densification temperature of Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramics decreased from 1 080 ℃ to 1 000 ℃ when x increased from 0 to 0.16.Ag(Nb0.8Ta0.2)1-x(Mn0.5W0.5)xO3 ceramic was found to have the best dielectric properties when x=0.08,larger permittivity(■=547) and smaller dielectric loss(tan■=0.00156).  相似文献   

3.
LiNi0.5Mn1.5O4 was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD patterns show that LiNi0.5Mn1.5O4 synthesized under various conditions has cubic spinel structure. SEM images exhibit that the particle size increases with increasing calcination temperature and time. Electrochemical test shows that the LiNi0.5Mn1.5O4 calcined at 700 °C for 24 h delivers up to 143 mA · h/g, and the capacity retains 132 mA · h/g after 30 cycles. Foundation item: Project (76600) supported by Postdoctoral Science Foundation of Central South University  相似文献   

4.
A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.  相似文献   

5.
A series of bulk polycrystalline La1-xLixMnO3 samples with x ranging from 0.1 to 0.5 was prepared by sol-gel method,X-ray diffraction patterns show that the crystal structures are single rhombohedral perorskite for the x≤0.3 sample and the impurity appears when x〉0.3.Under the same synthesized conditions,the higher Li content samples display a higher content of liquid phase content and larger mean grain sizes,which leads to the increases of the effect of the grain boundaries.The experimental results show that the change of the ferromagnetic transition temperature and the resistivity can attribute to the effect of the grain boundary and the connectivity of the inter grains as well as the ratio of Mn^3+ to Mn^4+.  相似文献   

6.
利用污水厂好氧污泥进行锰氧化细菌的激活试验,探究pH值以及初始Mn2+浓度对激活效果的影响,采用高通量测序技术分析激活前后微生物群落变化,利用X射线衍射(X-ray diffraction,XRD)技术对产生的生物氧化锰进行表征,研究pH值和投加量对生物氧化锰去除乙炔基雌二醇(17α-ethinylestradiol,...  相似文献   

7.
Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed by calcination at 400 ℃ for 2 h in air. FTIR spectra demonstrate that amine group in original gel is eliminated by calcination, and the TiO2 powder is liable to absorb water onto its surface and into its capillary pore. XRD and SEM results show that the average size of nanocrystalline TiO2 particles is no more than 60 nm and with increasing the calcination temperature, the size of particles increases. XPS studies indicate the nitrogen atom enters into the TiO2 lattice and occupies the position of oxygen atom. The nitrogen doping not only depresses the grain growth of TiO2 particles, but also reduces the phase transformation temperature of anatase to futile. The photocatalytic activity of the nitrogen-doped TiO2 powders has been evaluated by experiments of photocatalytic degradation aqueous methylene blue.  相似文献   

8.
TiO2/bauxite-tailings (TiO2/BTs) composites were prepared via a chemical liquid deposition method and characterized by X-ray diffractometry (XRD), scanning electronic microscopy (SEM) and N2 adsorption analysis. The photocatalytic performance of TiO2/BTs composites was evaluated with UV-Vis spectrophotometer following the changes of phenol concentration under different illumination time. Effects of the calcination temperature, the pH and the cycles on the photocatalytic activity of TiO2/BTs composites were investigated. The composites calcined at 500 and 600 °C exhibit the best photocatalytic performance, and the phenol degradation ratios reacting for 40 and 160 min reach 35% and 78% respectively under the same conditions, higher than those of 29% and 76% of the Degussa P25(TiO2). The ability of TiO2/BTs500 (BTs500 represents bauxite-tailings calcined at 500 °C) composites to degrade phenol increases with decreasing pH.  相似文献   

9.
LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.  相似文献   

10.
Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling process on phase composition and morphology of the whiskers were investigated by TG-DSC(thermo gravimetric-differential scanning calorimeter), XRD(X-ray diffraction), and SEM(scanning electron microscope). Pure K2Ti4O9 potassium titanate whiskers with large length-diameter ratio(r)(over 250) can be obtained at RT/K = 2.9 and TC = 950 ℃.  相似文献   

11.
A novel technology of in-situ coating Al2O3 on the surface of H4TiO4 was developed to prevent the aggregation of nano-TiO2 powders and improve the dispersibility and thermal stability in the way of forming a uniform coating layer. The heterogeneous nucleation was conducted to prepare the precursor of nano-TiO2 and then Al2O3 was coated on the surface of precursor. The effects of Al2O3 in-situ coating on the properties of nano-TiO2 were investigated. The results show that H4TiO4 can be dispersed well under alkaline condition (pH 8.5) and the heterogeneous nucleation can be controlled easily. The optimized uniform coating layer is obtained by adding 5% (mass fraction) and 10% of Al2O3 and the aggregation of nano-TiO2 powders is effectively inhibited and the dispersibility is obviously improved. The crystal sizes of TiO2 powders are 12.3, 11.4 and 8.7 nm after coating 0,5% and 10% of Al2O3 respectively. Al2O3 on the surface of particulates in amorphous phase could increase the thermal stability of nano-particles after calcined at 550 °C. Foundation item: Project(04GK2007) supported by Hunan Industrial Key Project of Science and Technology  相似文献   

12.
YAG(Y3Al5O12) powder was prepared by co-precipitation method.To avoid pH values changing intensely during titration process,the 4 3 NH HCO solution with 4 3 NH NO was used as precipitant solution.The pH change of precipitant solution during titration process,compositions of precursor,phase formation process and morphology of the prepared powder were investigated by means of pH meter,FT-IR,XRD and TEM.The results show that the presence of 4 3 NH NO in 4 3 NH HCO solution is crucial to alleviate the pH change,lower the calcination temperature and meliorate the morphology of YAG powder.The mechanisms were studied in detail.The YAG phase can be obtained at a lower temperature of 900 ℃.The obtained powder,composed of elliptical particles,showed a meliorated morphology.  相似文献   

13.
Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibrating sample magnetometer(VSM) at room temperature.The results show that the grain size of nanocrystalline Ni1-xZnxFe2O4 ferrite calcined at 600 ℃ for 1.5 h is about 30 nm.Lattice parameter and specific saturation magnetization Ms of nanocrystalline Ni1-xZnxFe2O4 ferrite increase with the Zn2+ ions content at room temperature,and maximum Ms is 66.8 A·m2·kg-1 as the Zn2+ ions content is around 0.5,and coercivity Hc of the nanocrystalline Ni1-xZnxFe2O4 ferrite decreases with Zn2+ ions content.  相似文献   

14.
采用浸渍法制备了一系列的Ce/AC催化剂,以C3H6为还原剂,通过程序升温反应考察其选择性催化还原NO的催化性能。着重探讨Ce含量以及焙烧温度对催化剂催化性能的影响,并用BET、XRD、XPS和SEM对催化剂进行了表征。结果表明,Ce的氧化物能在载体表面呈现出高度分散状态;随着Ce含量的增加,催化剂的比表面积逐渐降低,而NO转化率却得到提高;Ce(0.07)/AC-400的催化剂能在270℃到330℃的温度区间内保持70%以上的NO转化率;过高的焙烧温度则会对催化剂载体结构造成严重破坏,在400℃焙烧制得的催化剂具有较宽的反应温度适应范围。  相似文献   

15.
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.  相似文献   

16.
Fe^3+ -doped nanometer TiO2 photocatalysts were prepared by sol-gel technique. TiO2 powders with different Fe^3+ / Ti^4 + molar ratios ranging from 0. 05% to 25% were synthesized by calcinating the gels in the temperature range of 200-600 ℃ . The effects of the content of iron ions and calcination temperature on the physical properties of the powders and their photocatalytic activities were examined by the photodecorapositon of methyl orange in sunlight. The results show that Fe dopant can decrease the temperature of nanatase-ratile transformation. The ideal photocatalytic property was achieved when the sample with an Fe^3+ / Ti^4+ ratio of 20 at% was calcined at about 300 ℃ for an hour, which is superior to that of commercial Degussa P-25. The optimum microstructure of the Fe-doped TiO2 for a high photocatalytic activity in sunlight is consisted of nanatase and ratile.  相似文献   

17.
Titanium dioxide/ kaolinite nanocomposite was prepared by the sol-gel method, with layered kaolinite as a substrate and Ti ( OC4H9 )4 as a precursor. The effects of hydrolysis, drying and calcination on the production of nanometric titanium dioxide were discussed. The optimal conditions for preparation were" bbtained through experiments. The 1- 10 nrn thick monolayer anatase nano TiO2 crystal was produced under the conditions as follows: hydrolyzed at 37-42 ℃ for 4 h, dried at 70-80 ℃ for 1 h, and calcined at 550-650℃ for 3 h. The rate of degradation of 40 mg/ L azo dye and 20 mg/ L acid red dye can reuch 96% and 81.45%, respectively.  相似文献   

18.
The nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5, molar fraction) fibers with fine diameters and high aspect ratios (length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts. The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer. The nanocomposite fibers consisting of ferrite (CoFe2O4) and perovskite (BaTiO3) are formed at the calcination temperature of 900 °C for 2 h. The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 °C. The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology. The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size, while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 °C. The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.  相似文献   

19.
Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the microstructures and morphologies, respectively. The mechanism of the mechano-chemical reaction between calcined kaolin and TiO2 was studied by infrared spectra (IR). The results show that TiO2 coats evenly on the surfaces of calcined kaolin particles by Si-O-Ti and Al-O-Ti bonds on their interfaces. The hiding power and whiteness of CK/TCPM are 17.12 g/m2 and 95.7%, respectively, presenting its similarity to TiO2 in pigment properties.  相似文献   

20.
A new route to synthesize nanosized crystalline of (La0.67-xGdx)Sr0.33MnO3 (X=0.05, 0.10, 0.15, 0.20) perovskite-type complex oxides at calcination temperature of 600-1000℃ using the amorphous molecular alloy as precursors was reported. The precursor could be completely decomposed into complex oxide at temperature below 500℃ according to the TGA and DTA results. XRD demonstrates that the decomposed species is composed of perovskite-type structure at calcination temperature of 600℃ for 2 h. The particle size that depends on the calcination temperature of the precursor is in a range of 30-120 nm as determined by transmission electron microscopy (TEM). This method is effective and can be easily quantitatively controlled to synthesize nanosized perovskite-type complex oxides. The magnetic properties of (La0.67 xGdx)Sr0.33MnO3 nanocrystalline were preliminary studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号