首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(phenylsilsesquioxane)–titania (PhSiO3/2–TiO2) hybrid particles were prepared from phenyltriethoxysilane and titanium tetra- n -butoxide by the sol–gel method. Fourier transform infrared spectra showed that PhSiO3/2 and the TiO2 components were hybridized through Si–O–Ti bonds. The refractive index of the particles was monotonically increased from 1.57 to 1.62 with an increase in the TiO2 content. The PhSiO3/2–TiO2 particles were electrophoretically deposited on indium tin oxide (ITO)-coated glass substrates to form opaque, thick films about 3 μm in thickness. When the mole ratio x in (1− x )PhSiO3/2· x TiO2 was equal to or less than 0.05, the deposited PhSiO3/2–TiO2 films became transparent with a heat treatment at 400°C because of the thermal sintering of the particles.  相似文献   

2.
Poly(benzylsilsesquioxane) (BnSiO3/2) particles show glass transition behavior, and the particles become a supercooled liquid when they are heated at temperatures above the glass transition temperature. Contact angles of BnSiO3/2 molten liquid on the hydrophobic surface with fluoroalkylsilane and hydrophilic surface with silica were found to be around 77° and 12°, respectively. Using the difference in wettability for BnSiO3/2 molten liquid between the hydrophobic and hydrophilic surfaces, micropatterns of transparent BnSiO3/2-thick films were formed by the electrophoretic deposition of BnSiO3/2 particles on indium tin oxide substrates with hydrophobic–hydrophilic patterns and subsequent heating above the glass transition temperature.  相似文献   

3.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

4.
BiScO3–PbTiO3 (BSPT) thin films near the morphotropic phase boundary were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates via an aqueous sol–gel method. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 50 nm. The dielectric, ferroelectric, and piezoelectric properties of the sol–gel-derived BSPT thin films were investigated. A remanent polarization of 74 μC/cm2 and a coercive field of 177 kV/cm were obtained. The local effective piezoelectric coefficient d *33 was 23 pC/N at 2 V, measured by a scanning probe microscopy system. The dielectric peak appeared at 435°C, which was 80°C higher than that of Pb(Ti, Zr)O3 thin films.  相似文献   

5.
ZrO2 powder was prepared by a sol–emulsion–gel method at temperatures below 140°C from ZrO(NO3)2· n H2O. The asprepared powder was amorphous, but crystallized into the tetragonal structure by 600°C. The metastable tetragonal powder (600°C) was comprised of ultrafine 4- to 6-nm size particles. On heat treatment, the tetragonal form completely transformed into the monoclinic state at 1100°C. Preliminary studies indicate good sinterability with densities greater than 94% at 1100°C and with a grain size of 0.25 μ.  相似文献   

6.
Microstructure and phase development during the thermal decomposition of sol–gel precursor coatings of PbZr0.53Ti0.47O3 on platinized silicon substrates have been investigated for a triol sol–gel route. The single-layer, 0.4 μm PZT films were heated from below the substrate, over the temperature range 350–600°C, using a calibrated hot plate. The first crystalline phase to appear was a PbPt3 intermetallic phase at the Pt/PZT interface. Although perovskite PZT formed at ca. 500°C, heating at higher temperatures, for example 550°C for 30 min, was required to develop ferroelectric hysteresis loops. However, the rather low value of remanent polarization, P r= 11 μC·cm−2, was consistent with incomplete crystallization at 550°C. The values of remanent polarization increased with increasing processing temperatures, reaching 21 μC·cm−2 for samples heated at 600°C, with a corresponding E c value of 57 kV·cm−1. Distinctive spherical precipitates up to ca. 50 nm in size have been identified by TEM in the lower portions of otherwise amorphous coatings, after heating at around 350–400°C. Although their precise composition could not be identified, they were mostly Pb-rich, and it is speculated that they form due to reduction of some of the lead(II) acetate starting reagent, to atomic Pb during the early stages of thermal decomposition of the organic components of the gel; it is possible that subsequent reactions occur to form lead oxides or carbonates. High levels of porosity were present in many of the fully crystallized films. The possible reasons for this are discussed.  相似文献   

7.
The sol–gel–hydrothermal processing of (Na0.8K0.2)0.5Bi0.5TiO3 (NKBT) nanowires as well as their densification behavior were investigated. The morphology and structure analyses indicated that the sol–gel–hydrothermal route led to the formation of phase-pure perovskite NKBT nanowires with diameters of 50–80 nm and lengths of 1.5–2 μm, and the processing temperature was as low as 160°C, but the conventional sol–gel route tended to lead to the formation of NKBT agglomerated porous structured nanopowders, and the processing temperature was higher than 650°C. It is believed that the gel precursor and hydrothermal environment play an important role in the formation of the nanowires at a low temperature. Owing to the better packing efficiency and therefore a good sinterability of the freestanding nanowhiskers, the pressed pellets made by NKBT nanowires showed >98% theoretical density at 1100°C for 2 h. The sol–gel–hydrothermal-derived ceramics have typical characteristics of relaxor ferroelectrics, and the piezoelectric properties were better than the ceramics prepared by the conventional sol–gel and solid-state reaction.  相似文献   

8.
CuAlO2 is a delafossite-type compound and is a known p -type semiconductor. Transparent CuAlO2 thin films were prepared using a sol–gel technique. The films with an Al/Cu atomic ratio of 1.0 consisted of CuAlO2, Cu2O, and CuO after heat treatment at 800°–900°C in nitrogen gas. The electrical resistivity of the film heated at 800°C was 250 Ω·cm.  相似文献   

9.
Nd: YVO4 powders and thin films were successfuly synthesized by the sol–gel method using metal alkoxides. A homogeneous and stable solution was prepared by the reaction of Y(OEt)3, VO(O i Pr)3, and Nd(OEt)3 in 2-methoxyethanol. The precursor was a mixture of vanadium and yttrium double alkoxide. Precursor films were prepared by dip coating and crystallization to single-phase YVO4 at 500°C. Nd:YVO4 films were crystallized with (200) preferred orientation on glass substrates, which showed the characteristic optical absorption of neodymium.  相似文献   

10.
The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol–gel solution to PZT powder in the composite solution. Both the remanent polarization, P r, and transverse piezoelectric coefficient, e 31, f , increase with increasing proportion of the sol–gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm2, a dielectric constant of 450 (at 1 kHz), and e 31, f =−2.8 C/m2. Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm2, a dielectric constant of 1250 (at 1 kHz) and e 31, f =−5.8 C/m2.  相似文献   

11.
(100)-oriented, perovskite-type LaNiO3 thin films were prepared on SiO2 glass substrates by the sol–gel method. Effects of thermal processing on the orientation, surface morphology, and electrical properties of the films were investigated. The nearly complete (100)-orientation was achieved by drying the films at temperatures above 350°C before a final heat treatment at 700°C. It was the key to heat the substrate from the other side to obtain the oriented films. A possible mechanism of the orientation is proposed on the basis of surface energies of the films and the substrates and the interfacial energy between them.  相似文献   

12.
In this work, the fabrication and characterization of a composite films comprising classical ferroelectric (PbTiO3, PT) and relaxor (PbMg1/3Nb2/3O3, PMN) material is reported. Thick films consisting of ferroelectric and relaxor phases in the thickness range of 2–10 μm are fabricated on Pt-coated Si substrates at a temperature of ≤550°C via a modified sol–gel route. The phase purity of the composite films was determined by X-ray powder diffraction pattern. The morphology and composition homogeneity were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and by X-ray mapping method, respectively. High dielectric permittivity (ɛ≈1100) and low loss values (tan δ≈0.03) at 1 kHz and room temperature were measured on 2-μm-thick composite films for a particular composition of 83 mol% of a PT phase and 17 mol% of a PMN phase, with associated remanent polarization of P ≈31.6 μC/cm2 and coercive field of E c ≅166 kV/cm. Piezo-response force microscopy analysis of the composite film showed that the film is piezoelectric and switchable. The temperature dependence of the effective dielectric permittivity and loss of the films at different frequencies was studied in the temperature range −50° to 200°C. In the temperature range used for applications (−50° to +100°C) the composite shows quite low temperature coefficient of capacitance (TCC=100%( C T− C −50°)/ C −50°C))=18%, much lower than both PMN thick film and PT film in the same temperature range. This composition is therefore promising for low TCC applications.  相似文献   

13.
β-BaB2O4 (β-BBO) powders and films were successfully synthesized by the sol–gel method using metal alkoxides. A homogeneous and stable solution was prepared by the reaction of barium metal with boron triethoxide in ethanol by addition of diethanolamine. The drip-coated precursor films began to crystallize to β-BBO on Pt substrates at 500°C and converted to β-BBO films with preferred orientation to the c -axis at 700°C.  相似文献   

14.
SiCO glasses prepared from sol–gel precursors via pyrolysis in argon at temperatures ranging from 1000° to 1400°C were studied by transmission electron microscopy (TEM), in conjunction with electron energy-loss spectroscopy (EELS). EELS analysis showed that stoichiometric SiCO glass underwent phase separation, forming SiO2- and SiC-based environments. This process started at ∼1200°C. However, at temperatures >1300°C, precipitation of nanometer-sized SiC particles embedded in vitreous SiO2 was monitored by high-resolution TEM.  相似文献   

15.
Na2O· x Al2O3 ( x = 9, 11)films have been obtained by sol–gel method. Crystallization processes during heat treatments have been investigated by X–ray diffraction analysis. A metastable phase with the mullite structure, λ–Na2O· x Al2O3, has been observed starting from 800°C. Films remained stable after a heat treatment at 1000°C for 250 h. Impedance spectroscopy measurements showed that the films of λ-Na2O· x Al2O3 possess a large three–dimensional ionic conductivity at 400°C.  相似文献   

16.
Nano-crystalline PbSnO3 was synthesized by a sol–gel route. It was an anion-deficient pyrochlore ( a = b = c = 1.0677 nm) with space group Fd3m. TEM images confirmed the nano-size of particles as ∼10 nm, aggregated into larger clusters up to 1 μm. DSC-TGA investigation revealed that the PbSnO3 was unstable >800°C with 2.95% weight loss. The products of the reactions, Pb2SnO4 and SnO2, were identified by in situ high-temperature XRD. The complex decomposition reactions were deduced as (2 + x )PbSnO3= Pb2SnO4+ (1 + x )SnO2+ x PbO ( x = 0.104). The lattice parameters of PbSnO3 were determined by high-temperature XRD. The cell volume of PbSnO3 increased with increasing temperatures. The average volumetric thermal expansion of PbSnO3 was calculated as (β= 3.35 × 10−5/°C).  相似文献   

17.
Perovskite-type (La1- x Sr x )MnO3 (0 x 0.3) was synthesized through the sol–gel process at low temperature (400° to 500°C). Poly(acrylic acid) (PAA) was used to make a gel from an aqueous solution of lanthanum, strontium, and manganese nitrates. The particle-diameter distribution of the manganites had a maximum value of 0.3 to 0.7 μ m, and a specific surface area of about 17.5 to 23.5 m2/g.  相似文献   

18.
Perovskite-type thin films of lanthanum manganese oxide (LaMnO3) were prepared on yttria (8%) stabilized zirconia substrate by the sol–gel process from an alkoxide solution of lanthanum isopropoxide (La(O- i -C3H7)3) and manganese isopropoxide (Mn(O- i -C3H7)2). The alkoxide solution was chelated with 2-ethyacetoacetate, and further modified with polyethylene glycol (PEG). The obtained LaMnO3 thin film was transparent and macroscopically crackless. X-ray diffraction, differential thermal analysis–thermogravimetry analysis, and scanning electron microscope observations indicated that single-phase LaMnO3 thin films with a grain size of 80 to 100 nm are formed when a spin-coated LaMnO3 gelled film is heated at 600°C for 1 h. The porous and homogeneous grain structure with a grain size of <100 nm can be obtained when the LaMnO3 gelled film is heated at 600° and 800°C. It was considered that PEG might accelerate the crystallization of the perovskite phase, which indicates that PEG assists the formation of the La-O-Mn frame network during partial hydrolysis and condensation reactions in sol–gel processes.  相似文献   

19.
Thin KTaxNb1−xO3 (KTN) films were prepared by deposition of sol–gel precursor solutions on MgO (100) single crystals. Crystal structure and microstructure of the films as a function of processing parameters, such as rate, duration, and temperature of postdeposition heat treatment, were studied. Several techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to analyze the films. It was observed that slow heating of KTN films promotes pyrochlore formation while fast-firing of the films results in predominant formation of the perovskioe phase. In slow-heated samples, TEM showed randomly oriented pyrochlore crystallites with a vermicular nanostructure of 10–30 nm with an interpenetrating porosity of the same range. In fast-fired samples, large perovskite pockets with pyrochlore crystallites scattered among them were seen. The large perovskite grains were on the order of 0.1–0.5 μm, irregular in shape and porous. Transmission electron diffraction indicated these were single crystals, and ferroelectric domains were observed in them. Films of up to 1 μm thick were obtained by multiple deposition of the sol–gel KTN. Dense films were achieved when each layer was densified at 750°C for 2 h before the next layer was deposited.  相似文献   

20.
Lead zirconium titanate (Pb(Zr0.5Ti0.5)O3, PZT) ferroelectric thin films were successfully deposited on platinum-coated silicon substrates and platinum-coated silicon substrates with a PbTiO3 interlayer by using a modified sol–gel spin-coating process, using zirconium oxynitrate dihydrate as the zirconium source. The precursor solution for spin coating was prepared from lead acetate trihydrate, zirconium oxynitrate dihydrate, and tetrabutyl titanate. The use of zirconium oxynitrate instead of the widely used zirconium alkoxide provided more stability to the PZT precursor solution and a well-crystallized structure of PZT film at a relatively low processing temperature. PZT films that were annealed at a temperature of 700°C for 2 min via a rapid thermal annealing process formed a well-crystallized perovskite phase of PZT films and also had nanoscale uniformity. The microstructure and morphology of the prepared PZT thin films were investigated via X-ray diffractometry, transmission electron microscopy, and atomic force microscopy techniques. The values for the remnant polarization ( P ) and coercive electric field ( E ) of the PZT films that were obtained from the P–E loop measurements were 3.67 μC/cm2 and 54.5 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号