首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we introduce the logic programming languageDisjunctive Chronolog which combines the programming paradigms of temporal and disjunctive logic programming. Disjunctive Chronolog is capable of expressing dynamic behaviour as well as uncertainty, two notions that are very common in a variety of real systems. We present the minimal temporal model semantics and the fixpoint semantics for the new programming language and demonstrate their equivalence. We also show how proof procedures developed for disjunctive logic programs can be easily extended to apply to Disjunctive Chronolog programs. Manolis Gergatsoulis, Ph.D.: He received his B.Sc. in Physics in 1983, the M.Sc. and the Ph.D. degrees in Computer Science in 1986 and 1995 respectively all from the University of Athens, Greece. Since 1996 he is a Research Associate in the Institute of Informatics and Telecommunications, NCSR ‘Demokritos’, Athens. His research interests include logic and temporal programming, program transformations and synthesis, as well as theory of programming languages. Panagiotis Rondogiannis, Ph.D.: He received his B.Sc. from the Department of Computer Engineering and Informatics, University of Patras, Greece, in 1989, and his M.Sc. and Ph.D. from the Department of Computer Science, University of Victoria, Canada, in 1991 and 1994 respectively. From 1995 to 1996 he served in the Greek army. From 1996 to 1997 he was a visiting professor in the Department of Computer Science, University of Ioannina, Greece, and since 1997 he is a Lecturer in the same Department. In January 2000 he was elected Assistant Professor in the Department of Informatics at the University of Athens. His research interests include functional, logic and temporal programming, as well as theory of programming languages. Themis Panayiotopoulos, Ph.D.: He received his Diploma on Electrical Engineering from the Department of Electrical Engineering, National Technical Univesity of Athens, in 1984, and his Ph.D. on Artificial Intelligence from the above mentioned department in 1989. From 1991 to 1994 he was a visiting professor at the Department of Mathematics, University of the Aegean, Samos, Greece and a Research Associate at the Institute of Informatics and Telecommunications of “Democritos” National Research Center. Since 1995 he is an Assistant Prof. at the Department of Computer Science, University of Piraeus. His research interests include temporal programming, logic programming, expert systems and intelligent agent architectures.  相似文献   

2.
We present an improvement of SATCHMORE, calledA-SATCHMORE, by incorporating availability checking into relevancy. Because some atoms unavailable to the further computation are also marked relevant, SATCHMORE suffers from a potential explosion of the search space. Addressing this weakness of SATCHMORE, we show that an atom does not need to be marked relevant unless it is available to the further computation and no non-Horn clause needs to be selected unless all its consequent atoms are marked availably relevant, i.e., unless it is totally availably relevant. In this way,A-SATCHMORE is able to further restrict the ues of non-Horn clauses (therefore to reduce the search space) and makes the proof more goal-oriented. Our theorem prover,A-SATCHMORE, can be simply implemented in PROLOG based on SATCHMORE. We discuss how to incorporate availability cheeking into relevancy, describe our improvement and present the implementation. We also prove that our theorem prover is sound and complete, and provide examples to show the power of our availability approach. This research is supported in part by the Japanese Ministry of Education and the Artificial Intelligence Research Promotion Foundation. Lifeng He, Ph.D: He received the B. E. degree from Northwest Institute of Light Industry, China, in 1982, the M. S. and Ph.D. degrees in AI and computer science from Nagoya Institute of Technology, Japan, in 1994 and 1997, respectively. He currently works at the Institute of Open System in Nagoya, Japan. His research interests include automated reasoning, theorem proving, logic programming, knowledge bases, multi-agent cooperation and modal logic. Yuyan Chao, M. S.: She received the B. E. degree from Northwest Institute of Light Industry, China, in 1984, and the M. S. degree from Nagoya University, Japan, in 1997. She is currently a doctoral candidate in the Department of Human Information, Nagoya University. Her research interests include image processing, graphic understanding, CAD and theorem proving. Yuka Shimajiri, M. S.: She currently works as a Assistant Professor in Department of Artificial Intelligence and Computer Science at the Nagoya Institute of Technology. She received her B.Eng. and M.Eng. from the Nagoya Institute of Technology in 1994 and 1996, respectively. Her current research interests include logic programming and automated deduction. She is a member of IPSJ and JSAI. Hirohisa Seki, Ph.D.: He received the B. E., M. E. and Ph.D degrees from the University of Tokyo in 1979, 1981 and 1991 respectively. He joined the Central Research Laboratory of Mitsubishi Electric Corporation in 1981. From 1985 to 1989, he was with the Institute for New Generation Computer Technology (ICOT). Since 1992, he has been an Associate Professor in the Department of AI and Computer Science at Nagoya Institute of Technology. His current research interests include logic programming, deductive databases and automated deduction. He is a member of ACM, IEEE, IPSJ and JSAI. Hidenori Itoh, Ph.D.: He received the B. S. degree from Fukui University, in 1969, the M. S. degree and Ph.D degree from Nagoya University, Japan, in 1971 and 1974, respectively. From 1974 to 1985, he worked at Nippon Telephone and Telegraph Laboratories, developing operating systems. From 1985 to 1989, he was with the Institute for New Generation Computer Technology, developing knowledge base systems. Since 1989, he has become a professor at the Nagoya Institute of Technology. His current research interests include image processing, parallel computing, fuzzy logic and knowledge processing.  相似文献   

3.
The aim of this paper is to extend theConstructive Negation technique to the case ofCLP(SεT), a Constraint Logic Programming (CLP) language based on hereditarily (and hybrid) finite sets. The challenging aspects of the problem originate from the fact that the structure on whichCLP(SεT) is based is notadmissible closed, and this does not allow to reuse the results presented in the literature concerning the relationships betweenCLP and constructive negation. We propose a new constraint satisfaction algorithm, capable of correctly handling constructive negation for large classes ofCLP(SεT) programs; we also provide a syntactic characterization of such classes of programs. The resulting algorithm provides a novel constraint simplification procedure to handle constructive negation, suitable to theories where unification admits multiple most general unifiers. We also show, using a general result, that it is impossible to construct an interpreter forCLP(SεT) with constructive negation which is guaranteed to work for any arbitrary program; we identify classes of programs for which the implementation of the constructive negation technique is feasible. Agostino Dovier, Ph.D.: He is a researcher in the Department of Science and Technology at the University of Verona, Italy. He obtained his master degree in Computer Science from the University of Udine, Italy, in 1991 and his Ph.D. in Computer Science from the University of Pisa, Italy, in 1996. His research interests are in Programming Languages and Constraints over complex domains, such as Sets and Multisets. He has published over 20 research papers in International Journals and Conferences. He is teaching a course entitled “Special Languages and Techniques for Programming” at the University of Verona. Enrico Pontelli, Ph.D.: He is an Assistant Professor in the Department of Computer Science at the New Mexico State University. He obtained his Laurea degree from the University of Udine (Italy) in 1991, his Master degree from the University of Houston in 1992, and his Ph.D. degree from New Mexico State University in 1997. His research interests are in Programming Languages, Parallel Processing, and Constraint Programming. He has published over 50 papers and served on the program committees of different conferences. He is presently the Associate Director of the Laboratory for Logic, Databases, and Advanced Programming. Gianfranco Rossi, Ph.D.: He received his degree in Computer Science from the University of Pisa in 1979. From 1981 to 1983 he was employed at Intecs Co. System House in Pisa. From November 1983 to February 1989 he was a researcher at the Dipartimento di Informatica of the University of Turin. Since March 1989 he is an Associate Professor of Computer Science, currently with the University of Parma. He is the author of several papers dealing mainly with programming languages, in particular logic programming languages and Prolog, and extended unification algorithms. His current research interests are (logic) programming languages with sets and set unification algorithms.  相似文献   

4.
PAN is a general purpose, portable environment for executing logic programs in parallel. It combines a flexible, distributed architecture which is resilient to software and platform evolution with facilities for automatically extracting and exploiting AND and OR parallelism in ordinary Prolog programs. PAN incorporates a range of compile-time and run-time techniques to deliver the performance benefits of parallel execution while rertaining sequential execution semantics. Several examples illustrate the efficiency of the controls that facilitate the execution of logic programs in a distributed manner and identify the class of applications that benefit from distributed platforms like PAN. George Xirogiannis, Ph.D.: He received his B.S. in Mathematics from the University of Ioannina, Greece in 1993, his M.S in Artificial Intelligence from the University of Bristol in 1994 and his Ph.D. in Computer Science from Heriot-Watt University, Edinburgh in 1998. His Ph.D. thesis concerns the automated execution of Prolog on distributed heterogeneous multi-processors. His research interests have progressed from knowledge-based systems to distributed logic programming and data mining. Currently, he is working as a senior IT consultant at Pricewaterhouse Coopers. He is also a Research Associate at the National Technical University of Athens, researching in knowledge and data mining. Hamish Taylor, Ph.D.: He is a lecturer in Computer Science in the Computing and Electrical Engineering Department of Heriot-Watt University in Edinburgh. He received M.A. and MLitt degrees in philosophy from Cambridge University and an M.S. and a Ph.D. degree in computer science from Heriot-Watt University, Scotland. Since 1985 he has worked on research projects concerned with implementing concurrent logic programming languages, developing formal models for automated reasoning, performance modelling parallel relational database systems, and visualisizing resources in shared web caches. His current research interests are in applications of collaborative virtual environments, parallel logic programming and networked computing technologies.  相似文献   

5.
Hypotheses constructed by inductive logic programming (ILP) systems are finite sets of definite clauses. Top-down ILP systems usually adopt the following greedy clause-at-a-time strategy to construct such a hypothesis: start with the empty set of clauses and repeatedly add the clause that most improves the quality of the set. This paper formulates and analyses an alternative method for constructing hypotheses. The method, calledcautious induction, consists of a first stage, which finds a finite set of candidate clauses, and a second stage, which selects a finite subset of these clauses to form a hypothesis. By using a less greedy method in the second stage, cautious induction can find hypotheses of higher quality than can be found with a clause-at-a-time algorithm. We have implemented a top-down, cautious ILP system called CILS. This paper presents CILS and compares it to Progol, a top-down clause-at-a-time ILP system. The sizes of the search spaces confronted by the two systems are analysed and an experiment examines their performance on a series of mutagenesis learning problems. Simon Anthony, BEng.: Simon, perhaps better known as “Mr. Cautious” in Inductive Logic Programming (ILP) circles, completed a BEng in Information Engineering at the University of York in 1995. He remained at York as a research student in the Intelligent Systems Group. Concentrating on ILP, his research interests are Cautious Induction and developing number handling techniques using Constraint Logic Programming. Alan M. Frisch, Ph.D.: He is the Reader in Intelligent Systems at the University of York (UK), and he heads the Intelligent Systems Group in the Department of Computer Science. He was awarded a Ph. D. in Computer Science from the University of Rochester (USA) in 1986 and has held faculty positions at the University of Sussex (UK) and the University of Illinois at Urbana-Champaign (USA). For over 15 years Dr. Frisch has been conducting research on a wide range of topics in the area of automated reasoning, including knowledge retrieval, probabilistic inference, constraint solving, parsing as deduction, inductive logic programming and the integration of constraint solvers into automated deduction systems.  相似文献   

6.
Efficient algorithms for optimistic crash recovery   总被引:1,自引:0,他引:1  
Summary Recovery from transient processor failures can be achieved by using optimistic message logging and checkpointing. The faulty processorsroll back, and some/all of the non-faulty processors also may have to roll back. This paper formulates the rollback problem as a closure problem. A centralized closure algorithm is presented together with two efficient distributed implementations. Several related problems are also considered and distributed algorithms are presented for solving them. S. Venkatesan received the B. Tech. and M. Tech degrees from the Indian Institute of Technology, Madras in 1981 and 1983, respectively and the M.S. and Ph.D. degrees in Computer Science from the University of Pittsburgh in 1985 and 1988. He joined the University of Texas at Dallas in January 1989, where he is currently an Assistant Professor of Computer Science. His research interests are in fault-tolerant distributed systems, distributed algorithms, testing and debugging distributed programs, fault-tolerant telecommunication networks, and mobile computing. Tony Tony-Ying Juang is an Associate Professor of Computer Science at the Chung-Hwa Polytechnic Institute. He received the B.S. degree in Naval Architecture from the National Taiwan University in 1983 and his M.S. and Ph.D. degrees in Computer Science from the University of Texas at Dallas in 1989 and 1992, respectively. His research interests include distributed algorithms, fault-tolerant distributed computing, distributed operating systems and computer communications.This research was supported in part by NSF under Grant No. CCR-9110177 and by the Texas Advanced Technology Program under Grant No. 9741-036  相似文献   

7.
8.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

9.
This paper describescoordination relations, that are relations that induce the presence or absence of data on some dataspaces from the presence or absence of other data on other dataspaces. To that end we build upon previous work on the μLog model and show that the coordination relations can be easily incorporated in it. This is achieved, on the one hand, by means of novel auxiliary operations, not classically used in Linda-like languages, and, on the other hand, by a translation technique reducing the extended μLog model to the core model augmented with the auxiliary operations. Among the most significant ones are multiple read and get operations on a blackboard, readall and getall operations, and tests for the absence of data on blackboards. Although simple, the form of coordination relations we propose is quite powerful as evidenced by a few examples including relations coming from the object-oriented paradigm such as inheritance relations. Jean-Marie Jacquet, Ph.D.: He is Professor at the Institute of Informatics at the University of Namur, Belgium, and, at an honorary title, Research Associate of the Belgian National Fund for Scientific Research. He obtained a Master in Mathematics from the University of Liège in 1982, a Master in Computer Science from the University of Namur in 1984 and a Ph.D. in Computer Science from the University of Namur in 1989. His research interest are in Programming Languages and Coordination models. He has served as a reviewer and program committee member of several conferences. Koen de Bosschere, Ph.D.: He holds the degree of master of Science in Engineering of the Ghent University, and a Ph.D. from the same University. He is currently research associate with the Fund for Scientific Research — Flanders and senior lecturer at the Ghent University, where he teaches courses on computer architecture, operating systems and declarative programming languages. His research interests are coordination in parallel logic programming, computer architecture and systems software.  相似文献   

10.
In this paper, we present a new method for fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. The proposed method considers the centroid points and the standard deviations of generalized trapezoidal fuzzy numbers for ranking generalized trapezoidal fuzzy numbers. We also use an example to compare the ranking results of the proposed method with the existing centroid-index ranking methods. The proposed ranking method can overcome the drawbacks of the existing centroid-index ranking methods. Based on the proposed ranking method, we also present an algorithm to deal with fuzzy risk analysis problems. The proposed fuzzy risk analysis algorithm can overcome the drawbacks of the one we presented in [7]. Shi-Jay Chen was born in 1972, in Taipei, Taiwan, Republic of China. He received the B.S. degree in information management from the Kaohsiung Polytechnic Institute, Kaohsiung, Taiwan, and the M.S. degree in information management from the Chaoyang University of Technology, Taichung, Taiwan, in 1997 and 1999, respectively. He received the Ph.D. degree at the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, in October 2004. His research interests include fuzzy systems, multicriteria fuzzy decisionmaking, and artificial intelligence. Shyi-Ming Chen was born on January 16, 1960, in Taipei, Taiwan, Republic of China. He received the Ph.D. degree in Electrical Engineering from National Taiwan University, Taipei, Taiwan, in June 1991. From August 1987 to July 1989 and from August 1990 to July 1991, he was with the Department of Electronic Engineering, Fu-Jen University, Taipei, Taiwan. From August 1991 to July 1996, he was an Associate Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1996 to July 1998, he was a Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1998 to July 2001, he was a Professor in the Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. Since August 2001, he has been a Professor in the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. He was a Visiting Scholar in the Department of Electrical Engineering and Computer Science, University of California, Berkeley, in 1999. He was a Visiting Scholar in the Institute of Information Science, Academia Sinica, Republic of China, in 2003. He has published more than 250 papers in referred journals, conference proceedings and book chapters. His research interests include fuzzy systems, information retrieval, knowledge-based systems, artificial intelligence, neural networks, data mining, and genetic algorithms. Dr. Chen has received several honors and awards, including the 1994 Outstanding Paper Award o f the Journal of Information and Education, the 1995 Outstanding Paper Award of the Computer Society of the Republic of China, the 1995 and 1996 Acer Dragon Thesis Awards for Outstanding M.S. Thesis Supervision, the 1995 Xerox Foundation Award for Outstanding M.S. Thesis Supervision, the 1996 Chinese Institute of Electrical Engineering Award for Outstanding M.S. Thesis Supervision, the 1997 National Science Council Award, Republic of China, for Outstanding Undergraduate Student's Project Supervision, the 1997 Outstanding Youth Electrical Engineer Award of the Chinese Institute of Electrical Engineering, Republic of China, the Best Paper Award of the 1999 National Computer Symposium, Republic of China, the 1999 Outstanding Paper Award of the Computer Society of the Republic of China, the 2001 Institute of Information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the 2001 Outstanding Talented Person Award, Republic of China, for the contributions in Information Technology, the 2002 Institute of information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the Outstanding Electrical Engineering Professor Award granted by the Chinese Institute of Electrical Engineering (CIEE), Republic of China, the 2002 Chinese Fuzzy Systems Association Best Thesis Award for Outstanding M.S. Thesis Supervision, the 2003 Outstanding Paper Award of the Technological and Vocational Education Society, Republic of China, the 2003 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision, the 2005 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 Taiwan Fuzzy Systems Association Award for Outstanding Ph.D. Dissertation Supervision, and the 2006 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision. Dr. Chen is currently the President of the Taiwanese Association for Artificial Intelligence (TAAI). He is a Senior Member of the IEEE, a member of the ACM, the International Fuzzy Systems Association (IFSA), and the Phi Tau Phi Scholastic Honor Society. He was an administrative committee member of the Chinese Fuzzy Systems Association (CFSA) from 1998 to 2004. He is an Associate Editor of the IEEE Transactions on Systems, Man, and Cybernetics - Part C, an Associate Editor of the IEEE Computational Intelligence Magazine, an Associate Editor of the Journal of Intelligent & Fuzzy Systems, an Editorial Board Member of the International Journal of Applied Intelligence, an Editor of the New Mathematics and Natural Computation Journal, an Associate Editor of the International Journal of Fuzzy Systems, an Editorial Board Member of the International Journal of Information and Communication Technology, an Editorial Board Member of the WSEAS Transactions on Systems, an Editor of the Journal of Advanced Computational Intelligence and Intelligent Informatics, an Associate Editor of the WSEAS Transactions on Computers, an Editorial Board Member of the International Journal of Computational Intelligence and Applications, an Editorial Board Member of the Advances in Fuzzy Sets and Systems Journal, an Editor of the International Journal of Soft Computing, an Editor of the Asian Journal of Information Technology, an Editorial Board Member of the International Journal of Intelligence Systems Technologies and Applications, an Editor of the Asian Journal of Information Management, an Associate Editor of the International Journal of Innovative Computing, Information and Control, and an Editorial Board Member of the International Journal of Computer Applications in Technology. He was an Editor of the Journal of the Chinese Grey System Association from 1998 to 2003. He is listed in International Who's Who of Professionals, Marquis Who's Who in the World, and Marquis Who's Who in Science and Engineering.  相似文献   

11.
Web image indexing by using associated texts   总被引:1,自引:0,他引:1  
In order to index Web images, the whole associated texts are partitioned into a sequence of text blocks, then the local relevance of a term to the corresponding image is calculated with respect to both its local occurrence in the block and the distance of the block to the image. Thus, the overall relevance of a term is determined as the sum of all its local weight values multiplied by the corresponding distance factors of the text blocks. In the present approach, the associated text of a Web image is firstly partitioned into three parts, including a page-oriented text (TM), a link-oriented text (LT), and a caption-oriented text (BT). Since the big size and semantic divergence, the caption-oriented text is further partitioned into finer blocks based on the tree structure of the tag elements within the BT text. During the processing, all heading nodes are pulled up in order to correlate with their semantic scopes, and a collapse algorithm is also exploited to remove the empty blocks. In our system, the relevant factors of the text blocks are determined by using a greedy Two-Way-Merging algorithm. Zhiguo Gong is an associate Professor in the Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macao, China. He received his BS, MS, and PhD from the Hebei Normal University, Peking University, and the Chinese Academy of Science in 1983, 1988, and 1998, respectively. His research interests include Distributed Database, Multimedia Database, Digital Library, Web Information Retrieval, and Web Mining. Leong Hou U is currently a Master Candidate in the Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macao, China. He received his BS from National Chi Nan University, Taiwan in 2003. His research interests include Web Information Retrieval and Web Mining. Chan Wa Cheang is currently a Master Candidate in the Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macao, China. He received his BS from the National Taiwan University, Taiwan in 2003. His research interests include Web Information Retrieval and Web Mining.  相似文献   

12.
In instance-based learning, the ‘nearness’ between two instances—used for pattern classification—is generally determined by some similarity functions, such as the Euclidean or Value Difference Metric (VDM). However, Euclidean-like similarity functions are normally only suitable for domains with numeric attributes. The VDM metrics are mainly applicable to domains with symbolic attributes, and their complexity increases with the number of classes in a specific application domain. This paper proposes an instance-based learning approach to alleviate these shortcomings. Grey relational analysis is used to precisely describe the entire relational structure of all instances in a specific domain. By using the grey relational structure, new instances can be classified with high accuracy. Moreover, the total number of classes in a specific domain does not affect the complexity of the proposed approach. Forty classification problems are used for performance comparison. Experimental results show that the proposed approach yields higher performance over other methods that adopt one of the above similarity functions or both. Meanwhile, the proposed method can yield higher performance, compared to some other classification algorithms. Chi-Chun Huang is currently Assistant Professor in the Department of Information Management at National Kaohsiung Marine University, Kaohsiung, Taiwan. He received the Ph.D. degree from the Department of Electronic Engineering at National Taiwan University of Science and Technology in 2003. His research includes intelligent Internet systems, grey theory, machine learning, neural networks and pattern recognition. Hahn-Ming Lee is currently Professor in the Department of Computer Science and Information Engineering at National Taiwan University of Science and Technology, Taipei, Taiwan. He received the B.S. degree and Ph.D. degree from the Department of Computer Science and Information Engineering at National Taiwan University in 1984 and 1991, respectively. His research interests include, intelligent Internet systems, fuzzy computing, neural networks and machine learning. He is a member of IEEE, TAAI, CFSA and IICM.  相似文献   

13.
Summary This paper proposes a self-stabilizing protocol which circulates a token on a connected network in nondeterministic depth-first-search order, rooted at a special node. Starting with any initial state in which the network may have no token at all or more than one token, the protocol eventually makes the system stabilize in states having exactly one circulating token. With a slight modification to the protocol —by removing nondeterminism in the search — a depth-first-search tree on the network can be constructed. The proposed protocol runs on systems that allow parallel operations. Shing-Tsaan Huang was born in Taiwan on September 4, 1949. He got his Ph.D. degree in 1985 from Department of Computer Science, University of Maryland at College Park. Before he pursued his Ph.D. degree, he had worked several years in the computer industry in Taiwan. Professor Huang is currently the chairman of the Department of Computer Science, Tsing Hua University, Taiwan, Republic of China. His research interests include interconnection networks, operating systems and distributed computing. He is a senior member of the IEEE Computer Society and a member of the Association for Computing Machinery. Nian-Shing Chen was born in Taiwan on October 21, 1961. He received his Ph.D. degree in computer science from National Tsing Hua University in 1990. Dr. Chen is currently an associate professor with the Department of Information Management at Sun Yat-Sen University of Taiwan. His research interests include distributed systems, computer networks, computer viruses and expert systems. He is a member of IEEE and Phi Tau Phi honorary society.This research is supported by National Science Council of the Republic of China under the contract NSC81-0408-E-007-05 and NSC82-0408-E-007-027  相似文献   

14.
Summary A scheme for the compilation of imperative or functional programs into systolic programs is demonstrated on matrix composition/decomposition and Gauss-Jordan elimination. Using this scheme, programs for the processor network Warp and for several transputer networks have been generated. Christian Lengauer holds a Dipl. Math. (1976) from the Free University of Berlin, and an M.Sc (1978) and Ph.D. (1982) in Computer Science from the University of Toronto. He was an Assistant Professor of Computer Sciences at The University of Texas at Austin from 1982 to 1989 and is presently a Lecturer in Computer Science at the University of Edinburgh. His past research has been in the areas of systolic design, formal semantics and program construction, and automated theorem proving. Michael Barnett received a B.A. in Computer Science from Brooklyn College/City University of New York in 1985, and is currently a Ph.d. candidate at the University of Texas at Austin, where he has been since 1986. From 1985 to 1986 he worked at IBM's T.J. Watson Research Center. His current research interests include formal methods, programming methodology, and functional programming. Duncan G. Hudson III received the B.A. degree in computer sciences from The University of Texas at Austin in 1987 and the M.S.C.S. degree in computer sciences from The University of Texas at Austin in 1989. He has worked as a Graduate Research Assistant at The University of Texas at Austin in the areas of graphical parallel programming environments, parallel numerical algorithms, and objectoriented programming languages for parallel architectures and as a Software Design Engineer at Texas Instruments in the areas of objectoriented databases and parallel image understanding. He is currently a Ph.D. candidate in the Department of Computer Sciences at The University of Texas at Austin. His current research interests include parallel architectures and algorithms and parallelizing compilers.This research was supported in part by the following funding agencies: through Carnegie-Mellon University by the Defense Advanced Research Projects Agency monitored by the Space and Naval Warfare Systems Command under Contract N00039-87-C-0251 and by the Office of Naval Research under Contracts N00014-87-K-0385 and N00014-87-K-0533; through Oxford University by the Science and Engineering Research Council under Contract GR/E 63902; through the University of Texas at Austin by the Office of Naval Research under Contract N00014-86-K-0763 and by the National Science Foundation under Contract DCR-8610427  相似文献   

15.
Partial deduction strategies for logic programs often use an abstraction operator to guarantee the finiteness of the set of goals for which partial deductions are produced. Finding an abstraction operator which guarantees finiteness and does not lose relevant information is a difficult problem. In earlier work Gallagher and Bruynooghe proposed to base the abstraction operator oncharacteristic paths andtrees, which capture the structure of the generated incomplete SLDNF-tree for a given goal. In this paper we exhibit the advantages of characteristic trees over purely syntactical measures: if characteristic trees can be preserved upon generalisation, then we obtain an almost perfect abstraction operator, providing just enough polyvariance to avoid any loss of local specialisation. Unfortunately, the abstraction operators proposed in earlier work do not always preserve the characteristic trees upon generalisation. We show that this can lead to important specialisation losses as well as to non-termination of the partial deduction algorithm. Furthermore, this problem cannot be adequately solved in the ordinary partial deduction setting. We therefore extend the expressivity and precision of the Lloyd and Shepherdson partial deduction framework by integrating constraints. We provide formal correctness results for the so obtained generic framework ofconstrained partial deduction. Within this new framework we are, among others, able to overcome the above mentioned problems by introducing an alternative abstraction operator, based on so calledpruning constraints. We thus present a terminating partial deduction strategy which, for purely determinate unfolding rules, induces no loss of local specialisation due to the abstraction while ensuring correctness of the specialised programs. Michael Leuschel, Ph.D.: He currently works as a postdoctoral researcher at the Department of Computer Science of the Katholieke Universiteit Leuven. His present research focuses on program transformation and specialisation for declarative programming languages. Other research interests include abstract interpretation, optimised integrity checking and meta-programming. He received his degree (“Licence”) in Computer Science from the Université Libre de Bruxelles in 1990 and a Master of Artificial Intelligence from the Katholieke Universiteit Leuven in 1993, where he also received his Ph.D in 1997. Danny De Schreye, Ph.D: He is a professor at the Department of Computer Science of the Katholieke Universiteit Leuven and a senior research associate of the Belgian National Fund for Scientific Research. He obtained his Ph.D from K.U. Leuven in 1983, on the topic of operator algebras. His research interests are in the field of Logic Programming, and include program transformation and termination, knowledge representation and reasoning, and constraint programming.  相似文献   

16.
This paper demonstrates the capabilities offoidl, an inductive logic programming (ILP) system whose distinguishing characteristics are the ability to produce first-order decision lists, the use of an output completeness assumption as a substitute for negative examples, and the use originally motivated by the problem of learning to generate the past tense of English verbs; however, this paper demonstrates its superior performance on two different sets of benchmark ILP problems. Tests on the finite element mesh design problem show thatfoidl’s decision lists enable it to produce generally more accurate results than a range of methods previously applied to this problem. Tests with a selection of list-processing problems from Bratko’s introductory Prolog text demonstrate that the combination of implicit negatives and intensionality allowfoidl to learn correct programs from far fewer examples thanfoil. This research was supported by a fellowship from AT&T awarded to the first author and by the National Science Foundation under grant IRI-9310819. Mary Elaine Califf: She is currently pursuing her doctorate in Computer Science at the University of Texas at Austin where she is supported by a fellowship from AT&T. Her research interests include natural language understanding, particularly using machine learning methods to build practical natural language understanding systems such as information extraction systems, and inductive logic programming. Raymond Joseph Mooney: He is an Associate Professor of Computer Sciences at the University of Texas at Austin. He recerived his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in 1988. His current research interests include applying machine to natural language understanding, inductive logic programming, knowledge-base and theory refinement, learning for planning, and learning for recommender systems. He serves on the editorial boards of the journalNew Generation Computing, theMachine Learning journal, theJournal of Artificial Intelligence Research, and the journalApplied Intelligence.  相似文献   

17.
A range query finds the aggregated values over all selected cells of an online analytical processing (OLAP) data cube where the selection is specified by the ranges of contiguous values for each dimension. An important issue in reality is how to preserve the confidential information in individual data cells while still providing an accurate estimation of the original aggregated values for range queries. In this paper, we propose an effective solution, called the zero-sum method, to this problem. We derive theoretical formulas to analyse the performance of our method. Empirical experiments are also carried out by using analytical processing benchmark (APB) dataset from the OLAP Council. Various parameters, such as the privacy factor and the accuracy factor, have been considered and tested in the experiments. Finally, our experimental results show that there is a trade-off between privacy preservation and range query accuracy, and the zero-sum method has fulfilled three design goals: security, accuracy, and accessibility. Sam Y. Sung is an Associate Professor in the Department of Computer Science, School of Computing, National University of Singapore. He received a B.Sc. from the National Taiwan University in 1973, the M.Sc. and Ph.D. in computer science from the University of Minnesota in 1977 and 1983, respectively. He was with the University of Oklahoma and University of Memphis in the United States before joining the National University of Singapore. His research interests include information retrieval, data mining, pictorial databases and mobile computing. He has published more than 80 papers in various conferences and journals, including IEEE Transaction on Software Engineering, IEEE Transaction on Knowledge & Data Engineering, etc. Yao Liu received the B.E. degree in computer science and technology from Peking University in 1996 and the MS. degree from the Software Institute of the Chinese Science Academy in 1999. Currently, she is a Ph.D. candidate in the Department of Computer Science at the National University of Singapore. Her research interests include data warehousing, database security, data mining and high-speed networking. Hui Xiong received the B.E. degree in Automation from the University of Science and Technology of China, Hefei, China, in 1995, the M.S. degree in Computer Science from the National University of Singapore, Singapore, in 2000, and the Ph.D. degree in Computer Science from the University of Minnesota, Minneapolis, MN, USA, in 2005. He is currently an Assistant Professor of Computer Information Systems in the Management Science & Information Systems Department at Rutgers University, NJ, USA. His research interests include data mining, databases, and statistical computing with applications in bioinformatics, database security, and self-managing systems. He is a member of the IEEE Computer Society and the ACM. Peter A. Ng is currently the Chairperson and Professor of Computer Science at the University of Texas—Pan American. He received his Ph.D. from the University of Texas–Austin in 1974. Previously, he had served as the Vice President at the Fudan International Institute for Information Science and Technology, Shanghai, China, from 1999 to 2002, and the Executive Director for the Global e-Learning Project at the University of Nebraska at Omaha, 2000–2003. He was appointed as an Advisory Professor of Computer Science at Fudan University, Shanghai, China in 1999. His recent research focuses on document and information-based processing, retrieval and management. He has published many journal and conference articles in this area. He had served as the Editor-in-Chief for the Journal on Systems Integration (1991–2001) and as Advisory Editor for the Data and Knowledge Engineering Journal since 1989.  相似文献   

18.
This paper deals with deductive databases in linear logic. The semantics of queries, views, constraints, and (view) updates are defineddeclaratively in linear logic. In constrast to classical logic, we can formalise non-shared view, transition constraints, and (view) updates easily. Various proof search strategies are presented along with an algorithm for query evaluation from a bottom-up direction. An additional advantage is that the associated meaning of a given relation can be defined in terms of the validity of a legal update in a given relation. We also defined formally the update principles and showed the correctness of the update translation algorithms. In this approach, we provide virtual view updates along with real view updates, and view DELETIONs are special cases of view REPLACEMENTs. This permits three transactional view update operations (INSERTION, DELETION, REPLACEMENT) in comparison to only (INSERTION, DELETION) in most existing systems. Dong-Tsan Lee, Ph.D.: He is a computer scientist in the Department of Computer Science at University of Western Australia, Perth, Western Australia, Australia. He received the B.S. and M.S. degrees from the Department of Computer Science at National Chiao-Tung University, Taiwan, in 1983 and 1985, respectively, and earned the Ph.D. degree from the Department of Computer Science at University of Western Australia. His research interests include database and artificial intelligence, linear logic, and real-time software engineering. Chin-Ping Tsang, Ph.D.: He is currently an associate professor in the Department of Computer Science at University of Western Australia, Perth, Western Australia, Australia. He received the Ph.D. degree from the University of Western Australia. He was the head of the Department of Computer Science at the University of Western Australia from 1994 to 1997. His research interests include artificial intelligence, non-classicial logic and neural nets.  相似文献   

19.
Automated negotiation is a key issue to facilitate e-Business. It is an on-going research area and attracts attention from both research communities and industry. In this paper, we propose a multiple-stage co-operative automated negotiation architecture, including a sophisticated negotiation strategy and protocol, to resolve the agents' conflicts. This proposed architecture attempts to address the search for joint efficiency for negotiating agents in large and complex problem spaces using a co-evolutionary method. A game theoretic method is adapted to distribute the payoffs generated from the co-evolutionary method. The architecture supports interactions between the two methods to demonstrate that high-quality solutions can be found through their complimentary functions. Using the structure it is possible to refine and explore potential agreements through an iterated process. This article also reports some experimental results and discussions. Jen-Hsiang Chen obtained his MSc degree in Management of Information Technology from Sunderland University. He is a Ph.D. student within the Distributed Systems and Modelling Research Group in the School of Mathematical and Information Sciences at Coventry University. His research project is related to game theory and heuristic approaches in automated negotiation. Kuo-Ming Chao obtained both of his MSc and Ph.D. degrees from Sunderland University, UK. After getting his Ph.D. degree, he has been working at Engineering Design Centre, Newcastle University, UK as research associate. He joined School of Mathematical and Information Sciences, Coventry University as senior lecturer in 2000. He is currently the leader of Distributed System and Modelling Research Group within the school. His research interests include Multi-Agent systems, Web Services, and Grid Computing. Nick Godwin graduated in Mathematics at London University. He obtained a masters degree and a doctorate through the Mathematics Institute at Warwick University. Since that time he has worked at Coventry University, participating in a number of research projects associated with the application of Computing to Manufacturing. Recently he has been working with the Distributed Systems and Modelling Research Group in the School of Mathematical and Information Sciences at Coventry University. Von-Wun Soo graduated from Electrical Engineering from National Taiwan University. He got his master degree in Biomedical Engineering and Ph.D. degree in Computer Science from the State University of New Jersey, Rutgers, USA. After getting his PhD degree, he has been doing research and teaching as a faculty in Department of Computer Science at National Tsing Hua University, Hsin Chu, Taiwan. Recently, he has been working with coordination and ontology for multi-agent systems in various application domains such as context aware travelling information service, historical information extraction, biological and genomic knowledge management, and creative engineering design.  相似文献   

20.
We give an analysis of various classical axioms and characterize a notion of minimal classical logic that enforces Peirce’s law without enforcing Ex Falso Quodlibet. We show that a “natural” implementation of this logic is Parigot’s classical natural deduction. We then move on to the computational side and emphasize that Parigot’s λ μ corresponds to minimal classical logic. A continuation constant must be added to λ μ to get full classical logic. The extended calculus is isomorphic to a syntactical restriction of Felleisen’s theory of control that offers a more expressive reduction semantics. This isomorphic calculus is in correspondence with a refined version of Prawitz’s natural deduction. This article is an extended version of the conference article “Minimal Classical Logic and Control Operators” (Ariola and Herbelin, Lecture Notes in Computer Science, vol. 2719, pp. 871–885, 2003). A longer version is available as a technical report (Ariola et al., Technical Report TR608, Indiana University, 2005). Z.M. Ariola supported by National Science Foundation grant number CCR-0204389. A. Sabry supported by National Science Foundation grant number CCR-0204389, by a Visiting Researcher position at Microsoft Research, Cambridge, U.K., and by a Visiting Professor position at the University of Genova, Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号