首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光学层析成像具有分辨率高、无损伤性、便携性、连续性等特点,本文研究了光学层析成像图像重构两种常用的算法——直接傅里叶算法(DF)和滤波反投影算法(FBP)的理论方法。通过对在不同扫描投影角度数目下的图像进行模拟层析后,采用这两种算法进行了图像重构,比较了重构图像和原图像的均方差、重构时间和行像素值,结果证明DF算法的重构时间短、效率高,但重构图像的质量较低,而FBP算法重构结果的均方差低、质量好,但存在重构时间长、效率低的缺点。  相似文献   

2.
穆绍硕  张叶  贾平 《光学精密工程》2015,23(9):2677-2686
研究了软硬件相结合的亚像元超分辨成像技术。首先通过探测器扫描获得同一场景彼此错位亚像元像素的多帧图像作为训练样本和输入图像;然后针对传统的局部线性嵌入(LLE)实例学习超分辨算法过于依赖外部训练样本,不利于光电成像系统直接处理等缺点,提出了一种基于自学习的改进LLE算法;采用新的LLE权值计算方法获得正数权值,同时对初始估计再次运用自学习LLE方法恢复丢失的高频细节信息。仿真实验结果表明,该算法重构的图像的信噪比比传统LLE超分辨算法提高了0.8dB,运行时间提高了75%,视觉上可感知重构图像的细节信息更丰富。与其它方法相比,用搭载的微位移实验平台运行本文算法所获得重构图像的信噪比和信息熵都有很大提高,表明本文算法能获得高质量和高分辨率的重构图像。  相似文献   

3.
动态电容层析成像图像重建算法   总被引:3,自引:1,他引:2       下载免费PDF全文
刘靖  王雪瑶  刘石 《仪器仪表学报》2015,36(10):2355-2362
提出了融合ECT测量信息和被测对象动态演化信息的新型图像重建模型;基于Tikhonov正则化方法,建立一个同时考虑了ECT测量信息、被测对象动态演化信息、时间与空间约束的新型图像重建目标泛涵,将图像重建问题转化为最优化问题;提出了集成分裂Bregman迭代法优势的新型算法求解该目标泛涵。数值仿真结果表明,所提出的图像重建算法其图像重建质量均优于OIOR算法、STR算法及PLI算法;同时由于所提出的图像重建算法同时考虑了测量数据和重建模型的不精确性,其抵抗测量噪声的能力得以提高。  相似文献   

4.
Image reconstruction for soft-field tomography is a highly nonlinear and ill-posed inverse problem. Owing to the highly complicated nature of soft-field, the reconstructed images are always poor in quality. One of the factors that affect image quality is the number of sensors in a tomography system. It is commonly assumed that increasing the number of sensors in a tomography system will improve the ill-posed condition in image reconstruction and hence improve image quality. However, as the number of sensors increases, challenges such as more complicated and expensive hardware, slower data acquisition rates, longer image reconstruction times, and larger sensitivity matrices will arise, resulting in a greater ill-posed condition. Since deep learning (DL) is capable of expressing complex nonlinear functions, the majority of research efforts have been directed toward developing a robust DL-based inverse solver for image reconstruction. However, no study has been conducted to solve the inverse problem and improve the quality of the reconstructed image using a reduced sensor model for a large-scale tomography system. This paper proposed an image reconstruction algorithm based on Deep Neural Networks (DNN) to investigate its feasibility in solving the ill-posed inverse problem caused by the reduced sensor model for a large-scale tomography system. The proposed DNN model is based on a supervised, feed-forward, fully connected, backpropagation network. It comprises an input layer, three hidden layers and an output layer. Also, it was trained using large data samples obtained from COMSOL simulation. The relationship between the scattered electromagnetic field measurement and the corresponding true electromagnetic field distribution vector is determined. During the image reconstruction process, the untrained scattered electromagnetic field measurement samples are used as inputs to the trained DNN model, and the model output is an estimate of the electromagnetic field distribution. The results show that the proposed DNN can accurately describe the distribution of electromagnetic field and boundary shape of phantom compared to traditional algorithms (LBP, FBP, Noser and Tikhonov), regardless of the size and number of phantoms within the monitoring area. Hence, the proposed DNN is more robust and has a high degree of generalization.  相似文献   

5.
结合压缩感知和曲波的天文图像去噪   总被引:2,自引:0,他引:2  
张杰  史小平 《光学精密工程》2017,25(5):1387-1394
在天文图像去噪中,为了提高迭代曲波阈值算法的去噪重建性能,提出了基于循环平移和曲波维纳滤波的压缩感知迭代重构算法。首先,使用基于曲波阈值的循环平移方法对重构图像进行调整以抑制重构图像中的伪吉布斯效应;接着,用提出的曲波维纳滤波算子替代小波阈值在迭代过程中对图像曲波系数进行筛选以进一步提高重构图像的质量。通过对添加高斯白噪声的Lena图像和月球图像进行重构实验,分析本文算法和当前主流算法的性能。实验结果表明,与传统的压缩感知迭代曲波阈值算法相比,本文算法能够获得较优的去噪性能,有效地保护天文图像的细节信息,峰值信噪比大约提高了2.6~3.2dB。  相似文献   

6.
为了能够完成噪声图像的超分辨率重构,提出了一种基于稀疏表示的噪声图像超分辨率重构方法,可以同时完成图像去噪和超分辨率重构。首先,对样本图像和低分辨率图像进行块划分,建立样本库。其次,建立图像退化模型,采用相似样本加权平均的方式对输出的高分辨率图像块进行表示。根据输入的低分辨率图像块,计算样本块与输出的高分辨率图像块之间的相似性。提出了一种相似性描述方法,能够很好地解决噪声带来的影响。然后,采用相似性对稀疏编码优化模型进行惩罚,提出一种权值求解模型。模型可以自适应的搜索相似样本块而不需要预先设定相似块的个数。最后,求解权值,根据权值和样本块重构高分辨率图像块,并重构高分辨率图像。实验结果表明:所提出的方法较其它常见超分辨率算法的峰值信噪比可提高0.5dB左右,重构的图像细节更丰富,去噪效果更好,更适合实际应用。  相似文献   

7.
Different factors may influence the image quality of the first generation computed tomography (CT) system single-source-single-detector. One of the factors in the improvement of the reconstructed image quality is the related characteristics of the beam width. These characteristics depend on the shape of collimator and dimension of collimation apertures. For studying the effect of beam width an industrial CT system was designed and developed. The CT scanner consists of a 5.08 cm NaI(Tl) detector in diameter and a 137Cs (30 mCi) radioactive source. The position of phantom was defined by three motors. The CT scans were taken out by scanning 180° to collect attenuation beams. The images are reconstructed from the measured projections by the filtered back projection method to perform the inverse Radon transform. In this study we have investigated the beam width on reconstructed image contrast. To go through the process, several experiments were performed with different collimation apertures. Finally, the contrast of different images is compared by computing the RMS contrast of each image.  相似文献   

8.
Electrical capacitance tomography (ECT) is a visualization measurement method for two-phase flow. Imaging permittivity distributions using electrical capacitance tomography has always been one of the most significant issues studied by scholars, and the algorithm will have a great impact on the accuracy of image reconstruction result. This paper applies simulated annealing (SA) algorithm to image reconstruction in ECT. However, some parameters of SA algorithm need to be optimized in order to obtain better reconstructed images in ECT. The influence of different parameter values in SA algorithm for image reconstruction in ECT is studied, and a set of optimal parameters of the SA algorithm is obtained based on the orthogonal experimental design method in this paper. At the same time, simulation and static experiments are conducted. Reconstructed images by SA algorithm with optimized parameter are compared with the linear back projection (LBP) and Landweber iterative algorithms. The results show that better images can be obtained for typical oil-gas two-phase flow using SA algorithm. The quality and shape fidelity of reconstructed image for the central object are obviously improved.  相似文献   

9.
Modern microscopic techniques like high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging may involve collection of thousands of images per experiment. Efficient image-compression techniques are indispensable to manage these vast amounts of data. This goal is frequently achieved using lossy compression algorithms such as JPEG and JPEG2000. However, these algorithms are optimized to preserve visual quality but not necessarily the integrity of the scientific data, which are often analyzed in an automated manner. Here, we propose three observer-independent compression algorithms, designed to preserve information contained in the images. These algorithms were constructed using signal-to-noise ratio (SNR) computed from a single image as a quality measure to establish which image components may be discarded. The compression efficiency was measured as a function of image brightness and SNR. The alterations introduced by compression in biological images were estimated using brightness histograms (earth's mover distance (EMD) algorithm) and textures (Haralick parameters). Furthermore, a microscope test pattern was used to assess the effect of compression on the effective resolution of microscope images.  相似文献   

10.
电阻抗层析成像技术(EIT)因其非侵入和可视化等特性为人体肺部空间特性的监测提供了一种有效的方法。但是EIT的逆问题具有严重的非线性、病态性和欠定性,使得图像重建结果含有严重的伪影。针对上述问题,提出了一种由预映射、特征提取、深度重建以及残差去噪四个模块构成的V-ResNet的深度网络成像算法,实现对场域空间位置和电导率参数分布的重建。该算法有效地增加了前馈信息的多重传递并解决了深度网络的梯度消失问题,同时残差去噪模块有效地平滑了图像边界。采用相对误差(RE)和结构相似度(SSIM)来衡量成像质量,实验得出RE的平均值为0.14,SSIM平均值为0.96。仿真与实验结果表明,基于V-ResNet的成像算法与传统的成像算法相比,图像重建结果边界清晰,空间分辨率高。  相似文献   

11.
A Radon transform algorithm which incorporates the correlated X-ray images (some stock chest radiographs) into the processing of back-projection with the fan-beam geometry reconstruction with the aim of improving image quality was developed and explored. These reconstruction images were evaluated and compared with the original image. Meanwhile, we also made the comparisons with the filtered back-projection method and the Radon transform method without fan-beam geometry; the results also reveal that the proposed method has the best image reconstruction capability than other two methods. The results show that the proposed method produces reconstructed images with quiet high peak-signal-to-noise ratio.  相似文献   

12.
用支持向量回归法实现单帧图像超分辨率重建   总被引:1,自引:0,他引:1  
由于一些传统的超分辨率重建算法学习多幅不同类别的图像仍无法获得好的重建效果,本文提出了一种基于支持向量回归机和光栅扫描的单帧图像超分辨率重建算法。该算法首先采用光栅扫描法对一组高低分辨率训练图像提取图像块,从块中分别抽取输入向量和标签像素。利用Log算子判断这些块是属于高频空间还是低频空间,从而构建高低频空间向量对并对其进行优化。然后,用支持向量回归机(SVR)工具训练优化后的向量对,得到高低频空间下的两个字典;抽取测试低分辨率图像中的块并得到高低频空间下的输入向量,利用SVR工具回归对应的属于超分辨率图像块的标签像素并得到回归后的图像。最后,对图像进行后处理得到最终的超分辨率图像。与其它算法的对比实验表明:提出的算法具有较好的视觉效果。特别在放大倍数为2时,提出的算法在不同图像上的峰值信噪比(PSNR)和结构相似度(SSIM)值较双三次插值法分别提高了3.1%~5.3%和1.5%~8.1%。得到的结果显示提出的算法获得了更好的重建效果。  相似文献   

13.
光学过程层析成像是近几年发展起来的一种新型的光学测量技术,它源于医学CT的基本理论和方法,可认为是医学CT技术在工业过程监测领域的自然延伸和发展。然而,由于过程层析成像的被测对象为快速变化的工业过程,因此,其投影数据的数量比医学CT少得多,而实时性则要求更高。利用一种扇束扫描制式的光学传感器有利于提高光学过程层析成像的空间分辨率及测量精度,但在这种扫描制式下,引用医学CT的常见图像重建算法(如数据重排方法、反投影法和滤波反投影法等)却不适用或难以胜任工业检测的要求。为此提出了一种代数重建技术来提高光学过程层析成像的测量精度和速度。该算法不仅适用于少数投影数据的情况,也能使求解过程遍历几乎所有的图像像元,因此成像效果好和实时性较高,具有工程应用价值。  相似文献   

14.
Confocal microscopy is a three‐dimensional (3D) imaging modality, but the specimen thickness that can be imaged is limited by depth‐dependent signal attenuation. Both software and hardware methods have been used to correct the attenuation in reconstructed images, but previous methods do not increase the image signal‐to‐noise ratio (SNR) using conventional specimen preparation and imaging. We present a practical two‐view method that increases the overall imaging depth, corrects signal attenuation and improves the SNR. This is achieved by a combination of slightly modified but conventional specimen preparation, image registration, montage synthesis and signal reconstruction methods. The specimen is mounted in a symmetrical manner between a pair of cover slips, rather than between a slide and a cover slip. It is imaged sequentially from both sides to generate two 3D image stacks from perspectives separated by approximately 180° with respect to the optical axis. An automated image registration algorithm performs a precise 3D alignment, and a model‐based minimum mean squared algorithm synthesizes a montage, combining the content of both the 3D views. Experiments with images of individual neurones contrasted with a space‐filling fluorescent dye in thick brain tissue slices produced precise 3D montages that are corrected for depth‐dependent signal attenuation. The SNR of the reconstructed image is maximized by the method, and it is significantly higher than in the single views after applying our attenuation model. We also compare our method with simpler two‐view reconstruction methods and quantify the SNR improvement. The reconstructed images are a more faithful qualitative visualization of the specimen's structure and are quantitatively more accurate, providing a more rigorous basis for automated image analysis.  相似文献   

15.
Electrical Resistance Tomography (ERT) is used in process tomography to measure multi-phase fluid flow in pipes. ERT has the advantage of a non-invasive interface, but has challenges such as noise, a relatively low spatial resolution and the ill-posedness of the inverse problem. Many different image reconstruction algorithms have been developed in the medical imaging community, which offer promise to help improve ERT performance. However, no evaluation or methodology for comparison of different algorithms for industrial applications is available. To provide such an evaluation, we tested six ERT reconstruction algorithms for the identification in static and dynamic flow situations. Metrics were developed to evaluate the algorithms in terms of image quality and accuracy, different objects/shapes and coarse solids bed levels were tested statically in a spool piece, and bed levels dynamically in a pipe loop. An algorithm comparison methodology was developed and used to evaluate the different images based on the results obtained. Overall, results show significant variability between reconstruction algorithms, with some giving poor results at the pipe boundary and others poor results at the centre of the image. We identified two high performing algorithms and show that averages of individual algorithm images can achieve improved performance.  相似文献   

16.
Imaging objects in electrical capacitance tomography (ECT) measurement are often in a dynamic evolution process, and exploiting the spatial–temporal properties of the dynamic reconstruction objects is crucial for the improvement of the reconstruction quality. Based on the multiple measurement vectors, in this paper a robust dynamic reconstruction model that incorporates the ECT measurement information and the dynamic evolution information of a dynamic object, in which a series of dynamic images is cast as a third-order tensor that the first two dimensions are space and the third is time, is proposed. Under the considerations of the two-dimensional spatial structure property of a difference image and the spatial–temporal property of a third-order image tensor, a new objective functional that fuses the ECT measurement information, the dynamic evolution information, the temporal constraint, the spatial constraint, the low rank constraint of a difference image and the low n-rank constraint of a third-order tensor is proposed, where the images are reconstructed by a batching pattern. The split Bregman iteration (SBI) algorithm is developed for solving the proposed objective functional. Numerical simulations are implemented to demonstrate the advantages of the proposed algorithm on improving the reconstruction quality and the robustness.  相似文献   

17.
We present a new image reconstruction method for Electrical Capacitance Tomography (ECT). ECT image reconstruction is generally ill-posed because the number of measurements is small whereas the image dimensions are large. Here, we present a sparsity-inspired approach to achieve better ECT image reconstruction from the small number of measurements. Our approach for ECT image reconstruction is based on Total Variation (TV) regularization. We apply an efficient Split-Bregman Iteration (SBI) approach to solve the problem. We also propose three metrics to evaluate image reconstruction performance, i.e., a joint metric of positive reconstruction rate (PRR) and false reconstruction rate (FRR), correlation coefficient, and a shape and location metric. The results on both synthetic and real data show that the proposed TV-SBI method can better preserve the edges of images and better resolve different objects within reconstructed images, as compared to a representative state-of-the-art ECT image reconstruction algorithm, Projected Landweber Iteration with Linear Back Projection initialization (LBP-PLI).  相似文献   

18.
Several advantages and disadvantages have been cited for image collection with a slow-scan CCD camera. Here we explore its use for cryo-EM single particle reconstruction and present two practical examples. The icosahedral adenovirus (Ad) type 2 ( approximately 150 MDa) was reconstructed from 396 particle images. The Fourier shell correlation (FSC) 0.5 threshold and the Fourier shell phase residual (FSPR) 45 degrees criterion yielded 17 AA resolution for the ordered viral capsid. Visual comparison with the filtered Ad2 crystallographic hexon confirmed a resolution range of 15-17 A. The asymmetric DNA-PKcs protein (470 kDa) was reconstructed from 9,473 particle images, using a previously published reconstruction based on class-sum images as an orientational search model [Chiu et al. (1998) J. Mol. Biol. 284:1075-1081]. FSC and FSPR methods yielded 17 A resolution for the new DNA-PKcs reconstruction, indicating a small but noticeable improvement over that of the class-sum based reconstruction. Despite the lack of symmetry for DNA-PKcs and its lower image contrast compared to Ad2 (0.8% vs. 2.5%), the same resolution was obtained for both particles by averaging significantly more DNA-PKcs images. Use of the CCD camera enables the microscopist to adjust the electron beam strength interactively and thereby maximize the image contrast for beam sensitive samples. On-line Fourier transformation also allows routine monitoring of drift and astigmatism during image collection, resulting in a high percentage of micrographs suitable for image processing. In conclusion, our results show that digital image collection with the YAG-scintillator slow-scan CCD camera is a viable approach for 3D reconstruction of both symmetric and asymmetric particles.  相似文献   

19.
A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP).  相似文献   

20.
Synchrotron-radiation-based microcomputed-tomography (SR-μCT) is a powerful tool for yielding 3D structural information of high spatial and contrast resolution about a specimen preserved in its natural state. A large number of projection views are required currently for yielding SR-μCT images by use of existing algorithms without significant artifacts. When a wet biological specimen is imaged, synchrotron x-ray radiation from a large number of projection views can result in significant structural deformation within the specimen. A possible approach to reducing imaging time and specimen deformation is to decrease the number of projection views. In the work, using reconstruction algorithms developed recently for medical computed tomography (CT), we investigate and demonstrate image reconstruction from sparse-view data acquired in SR-μCT. Numerical results of our study suggest that images of practical value can be obtained from data acquired at a number of projection views significantly lower than those used currently in a typical SR-μCT imaging experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号