首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Band-selective homonuclear-decoupled (BASHD) two-dimensional NMR experiments are applied to the assignment of 1H NMR spectra of oligosaccharides, using as an example a heparin-derived hexasaccharide. The anomeric (H1) region of the 1H NMR spectrum is band-selected in the F1 dimension. With the increased resolution that results from less truncation of interferograms in the t1 dimension, finer digital resolution in the F1 dimension, and collapse of multiplets to singlets in the F1 dimension, cross-peaks to the anomeric protons of the two iduronic acid residues, which overlap in normal two-dimensional total correlation spectroscopy (TOCSY) and rotating frame Overhauser enhancement spectroscopy (ROESY) spectra of the hexasaccharide, are resolved in BASHD-TOCSY and BASHD-ROESY spectra, leading to an unequivocal assignment of the 1H NMR spectrum of the hexasaccharide. Incorporation of the water attenuation by transverse relaxation method for the complete and selective elimination of the water resonance into two-dimensional BASHD experiments makes it possible to observe oligosaccharide resonances at the frequency of the water resonance, as demonstrated with the observation of cross-peaks to resonances at the frequency of the water resonance in BASHD-TOCSY spectra of a second heparin-derived hexasaccharide.  相似文献   

2.
Comprehensive metabolite identification and quantification of complex biological mixtures are central aspects of metabolomics. NMR shows excellent promise for these tasks. An automated fingerprinting strategy is presented, termed COLMAR query, which screens NMR chemical shift lists or raw 1D NMR cross sections taken from covariance total correlation spectroscopy (TOCSY) spectra or other multidimensional NMR spectra against an NMR spectral database. Cross peaks are selected using local clustering to avoid ambiguities between chemical shifts and scalar J-coupling effects. With the use of three different algorithms, the corresponding chemical shift list is then screened against chemical shift lists extracted from 1D spectra of a NMR database. The resulting query scores produced by forward assignment, reverse assignment, and bipartite weighted-matching algorithms are combined into a consensus score, which provides a robust means for identifying the correct compound. The approach is demonstrated for a metabolite model mixture that is screened against the metabolomics BioMagResDatabank (BMRB). This NMR-based compound identification approach has been implemented in a public Web server that allows the efficient analysis of a wide range of metabolite mixtures.  相似文献   

3.
Although NMR spectroscopic techniques coupled with multivariate statistics can yield much useful information for classifying biological samples based on metabolic profiles, biomarker identification remains a time-consuming and complex procedure involving separation methods, two-dimensional NMR, and other spectroscopic tools. We present a new approach to aid complex biomixture analysis that combines diffusion ordered (DO) NMR spectroscopy with statistical total correlation spectroscopy (STOCSY) and demonstrate its application in the characterization of urinary biomarkers and enhanced information recovery from plasma NMR spectra. This method relies on calculation and display of the covariance of signal intensities from the various nuclei on the same molecule across a series of spectra collected under different pulsed field gradient conditions that differentially attenuate the signal intensities according to translational molecular diffusion rates. We term this statistical diffusion-ordered spectroscopy (S-DOSY). We also have developed a new visualization tool in which the apparent diffusion coefficients from DO spectra are projected onto a 1D NMR spectrum (diffusion-ordered projection spectroscopy, DOPY). Both methods either alone or in combination have the potential for general applications to any complex mixture analysis where the sample contains compounds with a range of diffusion coefficients.  相似文献   

4.
The authors recently proposed an approach to the metabonomic analysis of biofluid mixtures based on the use of the selective TOCSY experiment (Sandusky, P.; Raftery, D. Anal. Chem. 2005, 77, 2455). This method has some significant advantages over standard metabonomic analysis. However, when analyzing overlapped components, the selective TOCSY method can suffer from the relatively high likelihood of simultaneous excitation of several spin systems at once. This multiple excitation can cause problems both with the purity of the individual TOCSY peaks observed and with their assignment into specific spin systems. To address this problem, the possibility of using a more selective excitation is initially explored. Unfortunately, in most cases, greater spin system selectivity can only be gained at the expense of sensitivity. This is obviously an unacceptable tradeoff when dealing with biofluid samples. However, the application of the Pearson product moment correlation to the TOCSY peak integral intensities provides a test for individual TOCSY peak purity and allows for the assignment of the peaks into spin systems. The specific application of this two-stage "semiselective" TOCSY method to rat and human urine is presented. Significantly, it is also demonstrated that the use of semiselective TOCSY spectra as data inputs for PCA calculations provides a more sensitive and reliable method of distinguishing small differences in biofluid composition than the standard metabonomic approach using complete 1D proton NMR spectra of urine samples.  相似文献   

5.
Two-dimensional (2D) correlation analysis has been used in this study to identify changes in complex nuclear magnetic resonance (NMR) metabonomics spectra of rat urine samples obtained during a study in which vasculitis (vascular injury), an important safety element in preclinical trials, was induced. Two types of correlation analysis were performed, along the variables and along the samples, and both 2D covariance and correlation coefficient maps were calculated. The binned and 'raw' NMR spectra were analyzed (0.04 and 0.001 ppm resolution, respectively). Good correlation was found among the major peaks of the binned spectra, and two groups of samples were identified using sample-sample 2D correlation maps. Much more complex correlation features were obtained from the 'raw' spectra, in which the specific, butterfly-like patterns were obtained in the covariance map but with only a few significant correlation coefficients in the corresponding 2D correlation maps. In terms of classification, the same group of the last nine spectra that indicated the end of the process and clustered in the 2D sample-sample covariance map of the binned data was also found in the 2D sample-sample covariance map of the raw NMR spectra but, again, not in the 2D correlation coefficient map. A discussion is given on the details of the application of the correlation analysis with regard to spectral data resolution, alignment, the effect of actual intensities of the NMR signal, and reference to various results from 2D correlation analysis of vibrational spectra.  相似文献   

6.
Metabolite identification in the complex NMR spectra of biological samples is a challenging task due to significant spectral overlap and limited signal-to-noise. In this study we present a new approach, RANSY (ratio analysis NMR spectroscopy), which identifies all the peaks of a specific metabolite on the basis of the ratios of peak heights or integrals. We show that the spectrum for an individual metabolite can be generated by exploiting the fact that the peak ratios for any metabolite in the NMR spectrum are fixed and proportional to the relative numbers of magnetically distinct protons. When the peak ratios are divided by their coefficients of variation derived from a set of NMR spectra, the generation of an individual metabolite spectrum is enabled. We first tested the performance of this approach using one-dimensional (1D) and two-dimensional (2D) NMR data of mixtures of synthetic analogues of common body fluid metabolites. Subsequently, the method was applied to (1)H NMR spectra of blood serum samples to demonstrate the selective identification of a number of metabolites. The RANSY approach, which does not need any additional NMR experiments for spectral simplification, is easy to perform and has the potential to aid in the identification of unknown metabolites using 1D or 2D NMR spectra in virtually any complex biological mixture.  相似文献   

7.
Elucidation of the composition of chemical-biological samples is a main focus of systems biology and metabolomics. Due to the inherent complexity of these mixtures, reliable, efficient, and potentially automatable methods are needed to identify the underlying metabolites and natural products. Because of its rich chemical information content, nuclear magnetic resonance (NMR) spectroscopy has a unique potential for this task. Here we present a generalization and application of a recently introduced NMR data collection, processing, and analysis strategy that circumvents the need for extensive purification and hyphenation prior to analysis. It uses covariance TOCSY NMR spectra measured on a 1-mm high-temperature cryogenic probe that are analyzed by a spectral trace clustering algorithm yielding 1D NMR spectra of the individual components for their unambiguous identification. The method is demonstrated on a metabolic model mixture and is then applied to the unpurified venom mixture of an individual walking stick insect that contains several slowly interconverting and closely related metabolites.  相似文献   

8.
Optimizing NMR experimental parameters for high-throughput metabolic phenotyping requires careful examination of the total biochemical information obtainable from (1)H NMR data, which includes concentration and molecular dynamics information. Here we have applied two different types of mathematical transformation (calculation of the first derivative of the NMR spectrum and Gaussian shaping of the free-induction decay) to attenuate broad spectral features from macromolecules and enhance the signals of small molecules. By application of chemometric methods such as principal component analysis (PCA), orthogonal projections to latent structures discriminant analysis (O-PLS-DA) and statistical spectroscopic tools such as statistical total correlation spectroscopy (STOCSY), we show that these methods successfully identify the same potential biomarkers as spin-echo (1)H NMR spectra in which broad lines are suppressed via T2 relaxation editing. Finally, we applied these methods for identification of the metabolic phenotype of patients with type 2 diabetes. This "virtual" relaxation-edited spectroscopy (RESY) approach can be particularly useful for high-throughput screening of complex mixtures such as human plasma and may be useful for extraction of latent biochemical information from legacy or archived NMR data sets for which only standard 1D data sets exist.  相似文献   

9.
This work presents the first application of high-resolution magic angle spinning (HR-MAS) 1H NMR spectroscopy to human liver biopsy samples, allowing a determination of their metabolic profiles before removal from donors, during cold perfusion, and after implantation into recipients. The assignment of peaks observed in the 1H HR-MAS NMR spectra was aided by the use of two-dimensional J-resolved, TOCSY and 1H-13C HMQC spectra. The spectra were dominated by resonances from triglycerides, phospholipids, and glycogen and from a variety of small molecules including glycerophosphocholine (GPC), glucose, lactate, creatine, acetate, amino acids, and nucleoside-related compounds such as uridine and adenosine. In agreement with histological data obtained on the same biopsies, two of the six livers were found to contain high amounts of triglycerides by NMR spectroscopy, which also indicated that these tissues contained a higher degree of unsaturated lipids and a lower proportion of phospholipids and low molecular weight compounds. Additionally, proton T2 relaxation times indicated two populations of lipids, a higher mobility triglyceride fraction and a lower mobility phospholipid fraction, the proportions of which changed according to the degree of fat content. GPC was found to decrease from the pretransplant to the posttransplant biopsy of all livers except for one with a histologically confirmed high lipid content, and this might represent a biomarker of liver function posttransplantation. NMR signals produced by the liver preservation solution were clearly detected in the cold perfusion stage biopsies of all livers but remained in the posttransplant spectra of only the two livers with a high lipid content and were prominent mainly in the graft that later developed primary graft dysfunction. This study has shown biochemical differences between livers used for transplants that can be related to the degree and type of lipid composition. This technology might therefore provide a novel screening approach for donor organ quality and a means to assess function in the recipient after transplantation.  相似文献   

10.
We demonstrate here a new variant on a statistical spectroscopic method for recovering structural information on unstable intermediates formed in reaction mixtures. We exemplify this approach with respect to the internal acyl migration reactions of 1-beta-O-acyl glucuronides (AGs), which rearrange at neutral or slightly alkaline pH on a minute to hour time scale to yield a series of positional glucuronide ring isomers and alpha/beta anomers from the 1-beta (starting material), i.e. 2-beta, 2-alpha, 1-alpha, 3-beta, 3-alpha, and 4-beta, 4-alpha isomers together with the aglycon and alpha- and beta-glucuronic acid hydrolysis products. Multiple sequential 800 MHz cryoprobe (1)H NMR spectra (1D and 2D J-resolved, JRES) were collected on a 5.1 mM solution of a synthetic model drug glucuronide, 1-beta-O-acyl (S)-alpha-methyl phenylacetyl glucuronide (MPG) in 0.1 M sodium phosphate buffer in D2O at pD 7.4 over 18 h to monitor the reaction which leads to the formation of the eight positional isomers and hydrolysis products. As the reaction proceeds and new isomers form, the NMR signal intensities vary accordingly allowing the application of a novel kinetic variant on statistical total correlation spectroscopy (K-STOCSY) method to recover the connectivities between proton signals on the same reacting molecule based on their intensity covariance through time. We performed K-STOCSY analysis on both the standard 1D NMR spectra and the skyline projected singlets of the (1)H-(1)H JRES NMR spectra through time, i.e. the K-JRES-STOCSY experimental variant, which increases the effective spectral dispersion and is ideally suited for the analysis of heavily overlapped spin systems. High statistical correlations were observed between mutarotated alpha- and beta-anomers of individual positional isomers, as well as directly acyl migrated products and anticorrelation observed between signals from compounds that were being depleted as others increased, e.g. between the 1-beta and 2-alpha/2-beta isomers. This statistical kinetic approach enabled the recovery of structural connectivity information on all isomers allowing unequivocal resonance assignment, and this approach to spectroscopic information recovery has wider potential uses in the study of reactions that occur on the second-to-minute time scale in conditions where multiple sequential NMR spectra can be collected. JRES-STOCSY is also of potential use as a method for recovering spectroscopic information in highly overlapped NMR signals and spin systems in other types of complex mixture analysis.  相似文献   

11.
A new approach to enhancing information recovery from cryogenic probe "on-flow" LC-NMR spectroscopic analyses of complex biological mixtures is demonstrated using a variation on the statistical total correlation spectroscopy (STOCSY) method. Cryoflow probe technology enables sensitive and efficient NMR detection of metabolites on-flow, and the rapid spectral scanning allows multiple spectra to be collected over chromatographic peaks containing several species with similar, but nonidentical, retention times. This enables 1H NMR signal connectivities between close-eluting metabolites to be identified resulting in a "virtual" chromatographic resolution enhancement visualized directly in the NMR spectral projection. We demonstrate the applicability of the approach for structure assignment of drug and endogenous metabolites in urine. This approach is of wide general applicability to any complex mixture analysis problem involving chromatographic peak overlap and with particular application in metabolomics and metabonomics.  相似文献   

12.
We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach.  相似文献   

13.
Multivariate curve resolution is proposed for the study of complex chemical reactions monitored by two-dimensional (2D) NMR spectroscopy. In particular, in this work, multivariate curve resolution is applied to the study of the reaction between (15)N-labeled cisplatin and the amino acid-nucleotide hybrid (Phac-Met-linker-p(5')dG). At several stages of the reaction, 2D [(1)H,(15)N] HSQC NMR spectra were acquired and stored in data matrices. In a first step, multivariate curve resolution was applied to analyze individually each one of these 2D spectra, allowing the resolution of the corresponding (1)H and (15)N one-dimensional correlation spectra. In a second step, the whole set of 2D spectra recorded along the reaction were simultaneously analyzed by multivariate curve resolution, allowing the resolution of the kinetic concentration profiles and of the pure 2D NMR spectra of each of the species detected along the reaction. Results finally obtained confirmed previously postulated reaction mechanisms involving the existence of two monofunctional adducts and of two bifunctional adducts, with the structure of one of them not completely resolved.  相似文献   

14.
One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained.  相似文献   

15.
A 1.7-mm microcoil probe head was tested in the analysis of organophosphorus compounds related to the Chemical Weapons Convention. The microcoil probe head demonstrated a high mass sensitivity in the detection of traces of organophosphorus compounds in samples. Methylphosphonic acid, the common secondary degradation product of sarin, soman, and VX, was detected at level 50 ng (0.52 nmol) from a 30-microL water sample using proton-observed experiments. Direct phosphorus observation of methylphosphonic acid with (31)P{(1)H} NMR experiment was feasible at the 400-ng (4.17 nmol) level. Application of the microcoil probe head in the spiked sample analysis was studied with a test water sample containing 2-10 microg/mL of three organophosphorus compounds. High-quality (1)H NMR, (31)P{(1)H} NMR, 2D (1)H-(31)P fast-HMQC, and 2D TOCSY spectra were obtained in 3 h from the concentrated 1.7-mm NMR sample prepared from 1 mL of the water solution. Furthermore, a 2D (1)H-(13)C fast-HMQC spectrum with sufficient quality was possible to measure in 5 h. The microcoil probe head demonstrated a considerable sensitivity improvement and reduction of measurement times for the NMR spectroscopy in identification of chemicals related to the Chemical Weapons Convention.  相似文献   

16.
Because of its highly reproducible and quantitative nature and minimal requirements for sample preparation or separation, (1)H nuclear magnetic resonance (NMR) spectroscopy is widely used for profiling small-molecule metabolites in biofluids. However (1)H NMR spectra contain many overlapped peaks. In particular, blood serum/plasma and diabetic urine samples contain high concentrations of glucose, which produce strong peaks between 3.2 ppm and 4.0 ppm. Signals from most metabolites in this region are overwhelmed by the glucose background signals and become invisible. We propose a simple "Add to Subtract" background subtraction method and show that it can reduce the glucose signals by 98% to allow retrieval of the hidden information. This procedure includes adding a small drop of concentrated glucose solution to the sample in the NMR tube, mixing, waiting for an equilibration time, and acquisition of a second spectrum. The glucose-free spectra are then generated by spectral subtraction using Bruker Topspin software. Subsequent multivariate statistical analysis can then be used to identify biomarker candidate signals for distinguishing different types of biological samples. The principle of this approach is generally applicable for all quantitative spectral data and should find utility in a variety of NMR-based mixture analyses as well as in metabolite profiling.  相似文献   

17.
Identification and quantification of analytes in complex solution-state mixtures are critical procedures in many areas of chemistry, biology, and molecular medicine. Nuclear magnetic resonance (NMR) is a unique tool for this purpose providing a wealth of atomic-detail information without requiring extensive fractionation of the samples. We present three new multidimensional-NMR based approaches that are geared toward the analysis of mixtures with high complexity at natural (13)C abundance, including approaches that are encountered in metabolomics. Common to all three approaches is the concept of the extraction of one-dimensional (1D) consensus spectral traces or 2D consensus planes followed by clustering, which significantly improves the capability to identify mixture components that are affected by strong spectral overlap. The methods are demonstrated for covariance (1)H-(1)H TOCSY and (13)C-(1)H HSQC-TOCSY spectra and triple-rank correlation spectra constructed from pairs of (13)C-(1)H HSQC and (13)C-(1)H HSQC-TOCSY spectra. All methods are first demonstrated for an eight-compound metabolite model mixture before being applied to an extract from E. coli cell lysate.  相似文献   

18.
Extracting meaningful information from complex spectroscopic data of metabolite mixtures is an area of active research in the emerging field of "metabolomics", which combines metabolism, spectroscopy, and multivariate statistical analysis (pattern recognition) methods. Chemometric analysis and comparison of 1H NMR1 spectra is commonly hampered by intersample peak position and line width variation due to matrix effects (pH, ionic strength, etc.). Here a novel method for mixture analysis is presented, defined as "targeted profiling". Individual NMR resonances of interest are mathematically modeled from pure compound spectra. This database is then interrogated to identify and quantify metabolites in complex spectra of mixtures, such as biofluids. The technique is validated against a traditional "spectral binning" analysis on the basis of sensitivity to water suppression (presaturation, NOESY-presaturation, WET, and CPMG), relaxation effects, and NMR spectral acquisition times (3, 4, 5, and 6 s/scan) using PCA pattern recognition analysis. In addition, a quantitative validation is performed against various metabolites at physiological concentrations (9 microM-8 mM). "Targeted profiling" is highly stable in PCA-based pattern recognition, insensitive to water suppression, relaxation times (within the ranges examined), and scaling factors; hence, direct comparison of data acquired under varying conditions is made possible. In particular, analysis of metabolites at low concentration and overlapping regions are well suited to this analysis. We discuss how targeted profiling can be applied for mixture analysis and examine the effect of various acquisition parameters on the accuracy of quantification.  相似文献   

19.
The application of the traditional methods of multivariate statistics, such as the calculation of principle components, to the analysis of NMR spectra taken on sets of biofluid samples is one of the central approaches in the field of metabonomics. While this approach has proven to be a powerful and widely applicable technique, it has an inherent weakness, in that it tends to be dominated by those chemical species present at relatively higher concentrations. Using a set of commercial honey samples, a comparison of this classical metabonomics approach to one based on the use of the selective TOCSY experiment is presented. While the NMR spectrum of honey and its classical metabonomic analysis is completely dominated by a very few chemical species, specifically alpha-glucose and fructose, the statistical signal carried by minor honey components, such as amino acids, may be accessed using a selective TOCSY-based approach. This approach has the intrinsic virtue that it focuses the statistical analysis on a set of predefined chemical species, which might be chosen for their metabolic significance, and could be composed of either major or minor mixture constituents. Furthermore, the selective TOCSY method allows for more certain chemical identification, acquisition times of approximately 1 min, and accurate quantification of the species contributing to the statistical discriminatory signal.  相似文献   

20.
This paper demonstrates the use of two-dimensional (2D) correlation spectroscopy in conjunction with alternating least squares (ALS) based self-modeling curve resolution (SMCR) analysis of spectral data sets. This iterative regression technique utilizes the non-negativity constraints for spectral intensity and concentration. ALS-based SMCR analysis assisted with 2D correlation was applied to Fourier transform infrared (FT-IR) spectra of a polystyrene/methyl ethyl ketone/deuterated toluene (PS/MEK/d-toluene) solution mixture during the solvent evaporation process to obtain the pure component spectra and then the time-dependent concentration profiles of these three components during the evaporation process. We focus the use of asynchronous 2D correlation peaks for the identification of pure variables needed for the initial estimates of the ALS process. Choosing the most distinct bands via the positions of asynchronous 2D peaks is a viable starting point for ALS iteration. Once the pure variables are selected, ALS regression can be used to obtain the concentration profiles and pure component spectra. The obtained pure component spectra of MEK, d-toluene, and PS matched well with known spectra. The concentration profiles for components looked reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号