首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The glasses, in which oxygen was partially replaced with sulfur, have been synthesized in the Na2O-P2O5-Na2S system. The chemical and chromatographic analyses of the glasses synthesized have been performed. The temperature-concentration dependences of electrical conductivity of the glasses have been studied over a wide temperature range; the glass transition temperatures and the nature of charge carriers have been determined. The IR spectra and Raman spectra have been recorded at room temperature; the density and microhardness of the glasses and ultrasound velocity have been measured. A comparison of the electrical conductivities of the investigated glasses with those of the earlier studied glasses in the Na2O-P2O5 system has shown their fair coincidence. The introduction of sodium sulfide into the Na2O-P2O5 system is accompanied by an approximately threefold increase in electrical conductivity, although the concentrations of charge carriers (sodium ions) in the glasses amount to ∼17 and ∼26 mmol/cm3, respectively. The rise in electrical conductivity has been assumed to be caused by the increase in the degree of dissociation of polar structural chemical units including sulfide ions and by the higher mobility of sodium ions in the oxygen-free matrix.  相似文献   

2.
The temperature-concentration dependence of the electrical conductivity of glasses in the Na2SO4-NaPO3 and Na2O-P2O5 systems has been investigated. Based on the obtained experimental data (IR spectra, density, microhardness, sound velocity, and paper chromatography), it has been demonstrated that SO42− ions form terminal groups through the incorporation into polyphosphate fragments of the structure of glasses in the Na2SO4-NaPO3 system. An increase in the electrical conductivity of glasses in this system by a factor of ∼1000 (as compared to NaPO3) at 25°C and a decrease in the activation energy for electrical conduction from 1.40 to 1.10 eV have been interpreted from the viewpoint of the decrease in the dissociation energy E d of polar sulfate phosphate structural chemical fragments formed in the glass bulk upon introduction into sodium metaphosphate Na2SO4. This leads to an increase in the number of dissociated sodium ions, which are charge carriers, and to a decrease in the energy (E a) of their activation shift in the sublattice formed by sulfate phosphate fragments of the structure.  相似文献   

3.
The electrical conductivity of chalcogenide semiconductor films in the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 systems, which have been prepared by chemical deposition from mono-n-butylamine, has been studied as a function of the temperature and film composition. It has been established that the electrical conductivity of the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 films is predominantly determined by the copper iodide content. It has been demonstrated that the electrical properties of the chalcogenide glasses and the related films are characterized by the same values to within the experimental error, which is explained by the same model of dissolution of vitreous semiconductors in amines with the retention of the electrical properties of chalcogenide glasses after the deposition of films from their solutions.  相似文献   

4.
The electrical conductivity of CuI-Cu2Se-As2Se3 chalcogenide semiconductor films prepared through the chemical deposition from an organic solvent has been investigated as a function of the temperature and composition of the films. It has been established that the electrical properties of the chalcogenide glasses and related films are characterized by the same values within the limits of the experimental error. This result is in agreement with the model of dissolution of vitreous semiconductors in organic bases (amines), according to which the main properties of bulk (cast) chalcogenide glasses are retained in films prepared from these glasses.  相似文献   

5.
Two valence states of tin atoms (namely, the doubly charged Sn2+ and quadruply charged Sn4+ states) in the structure of the (As2Se3)0.4(SnSe)0.3(GeSe)0.3 glasses are identified by 119Sn Mössbauer spectroscopy. It is demonstrated that the concentration ratio of the doubly charged Sn2+ and quadruply charged Sn4+ states in the glass of this composition depends on the rate of quenching of the melt and on the initial temperature of the melt before quenching. The optical band gap and the activation energy for electrical conduction of the studied glass do not depend on the concentration ratio of the Sn2+ and Sn4+ ions. This behavior of the optical band gap and the activation energy is explained within the model according to which the structure of the glasses under investigation is built up of the structural units AsS3/2, As2/2Se4/4, GeSe4/2, SnSe4/2, and SnSe3/3, which correspond to the compounds AsSe3, AsSe, GeSe2, SnSe2, and SnSe, respectively.  相似文献   

6.
The concentration dependence of the electrical conductivity of glasses in the Tl2O-B2O3 system is studied. The nature of charge carriers in this system is experimentally investigated for the first time. It is demonstrated using the Hittorf, Tubandt, and Hebb-Liang-Wagner techniques and the Faraday law that neither Tl+ ions nor electrons are involved in the electricity transport. The verification of the Faraday law does not reveal the presence of thallium in the amalgam of the cathode or a change in the sample weight after electrolysis, to within the experimental error. This allows one to make the inference that protons can be charge carriers in glasses of the Tl2O-B2O3 system. It is shown using extended X-ray absorption fine structure (EXAFS) spectroscopy that Tl3+ ions and thallium Tl0 reduced to the metallic state are absent in the structure of the glasses under investigation. This means that thallium in glasses of the Tl2O-B2O3 system occurs only in the form of Tl+ ions. The analysis of the IR spectroscopic data leads to only a qualitative conclusion that the water content in the glasses insignificantly increases with an increase in the thallium oxide content. An increase in the electrical conductivity of glasses in the Tl2O-B2O3 system with an increase in the thallium oxide content is explained by the increase in the number of protons formed upon dissociation of H+[BO4/2]? structural-chemical units, because their concentration increases with increasing Tl2O content. In the structure of boron oxide, impurity hydrogen enters predominantly into the composition of H+[O2/2BO?] structural-chemical units, for which the dissociation energy is higher than that for the H+[BO4/2]? structural-chemical units. The increase in the concentration of H+[BO4/2]? structural-chemical units is accompanied by the increase in the number of dissociated protons, which are charge carriers in glasses of the Tl2O-B2O3 system.  相似文献   

7.
This paper reports on the results of an investigation into the concentration behavior of the glass-forming ability, heat resistance, glass transition temperature, density, refractive index, transparent spectral region, and impurity optical absorption of glasses in the Ga4Ge21Se50-Sb2Se3 system. The data obtained indicate that glasses in the Ga4Ge21Se50-Sb2Se3 system with a high Sb2Se3 content are of interest as materials for use in fiber optics.  相似文献   

8.
The refractive index of potassium aluminosilicate glass of the KAlSi3O8 composition in the pressure range up to 6.0 GPa has been measured using a polarizing interference microscope and an apparatus with diamond anvils. The changes in the relative density, which characterize the compressibility of the K2O · Al2O3 · 6SiO2 glass, have been estimated in the pressure range under investigation from the measured refractive indices within the framework of the theory of photoelasticity. The results have been compared with the data previously obtained for the Na2O · Al2O3 · 6SiO2 glass. Although the molar contents of Al2O3 and M 2O (where M = K or Na) are identical in these glasses, the KAlSi3O8 glass exhibits a higher compressibility, which agrees with the lower degree of depolymerization of this glass as compared to that observed in the NaAlSi3O8 glass. The pressure derivative of the bulk modulus K t , which is calculated from the Birch-Murnaghan equation for the KAlSi3O8 glass (K t = 7–9), is higher than that for the NaAlSi3O8 glass (K t = 5.5–6.0). An increase in the pressure derivative of the bulk modulus K t upon replacement of the Na+ cations by the K+ cations is explained by the inhibition of compression of the large K+ cations, which are located in cavities and have a considerably larger orbital radius than the Na+ cations. This manifests itself in the fact that the curves describing the dependences of the change in the relative density (dd0)/d (compressibility) on the pressure P for the KAlSi3O8 and NaAlSi3O8 glasses converge at pressures above 4.0 GPa.  相似文献   

9.
The structure of single-phase glasses in the BaO-B2O3-SiO2 system has been studied by the large- and small-angle X-ray scattering techniques. The glasses containing 40 mol % BaO upon equimolar replacement of B2O3 by SiO2 have been investigated. It has been demonstrated that the incorporation of barium ions into structural groupings fixes their position and provides ordering in the distribution of barium ions at interatomic distances up to at least 5 Å. The glasses under investigation are homogeneous, and their inhomogeneity is determined by thermal density fluctuations and fluctuations of the concentration of a part of barium ions distributed in a statistically random manner in the volume of the glass. The observed ordering in the distribution of barium ions is not reduced to the formation of local clusters with an increased concentration of barium ions but is most likely a characteristic feature of the bulk glass structure. The glass structure is consistent with the model of ideal associated solutions.  相似文献   

10.
The contact angles of the quartz glass surface by the As2S3 and As2Se3 glass melts and surface tension of these glass melts in the temperature range of 325–370°С have been experimentally measured. The polytherms are linear and possess negative slope in the mentioned temperature range. The work of the adhesion of As2S3 and As2Se3 glass melts to the quartz glass surface has been calculated and compared to the data on the adhesion strength of the As2S3–SiO2 and As2Se3–SiO2 boundaries of the solid phases.  相似文献   

11.
The structure of single-phase glasses in the SrO-B2O3-SiO2 system has been studied by the small-and large-angle X-ray scattering technique. The glasses containing 35, 40, and 45 mol % SrO upon equimolar replacement of B2O3 by SiO2 have been investigated. It has been demonstrated that the glasses do not contain chemical inhomogeneity regions. The inhomogeneity of the glasses is determined only by thermal density fluctuations. The isothermal compressibility varies insignificantly upon replacement of B2O3 by SiO2 and decreases with an increase in the SrO content. The glass structure is consistent with the model of ideal associated solutions.  相似文献   

12.
The electrical properties of glasses in the AgI-As2Te3 system are investigated by impedance spectroscopy and the Wagner and Tubandt methods. The glasses containing more than 40 mol % AgI possess a mixed electronic-ionic conductivity. It is found that the introduction of the ionogenic component suppresses hole conduction in the glass.Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Bobylev, Bychkov, Tveryanovich.  相似文献   

13.
Combined UV-visible and FTIR spectral studies of undoped and Nd2O3 –doped sodium silicophosphate glasses were carried out to characterize the optical and structural properties of such glasses. The base undoped silicophosphate glass exhibits strong UV absorption which is due to the presence of unavoidable trace iron impurities (mainly Fe3+ ions) present contaminated within the raw materials used for the preparation of such glasses. Nd2O3 –doped glasses show characteristic absorption bands extending in the entire visible region which are attributed to the contribution of Nd3+ ions with distinct peaks which are almost constant with the increase of dopant. This comes from the combined compact glass structure containing two glass forming units and the shielding of the rare-earth ions. Infrared absorption spectra of the studied glasses reveal characteristic IR bands due to the combination of both silicate and phosphate groups. The introduction of Nd2O3 within the dopant level (2 %) produces no variations in the IR vibrational bands due to the presence of the two structural silicate and phosphate groups giving compactness of the network structure. The deconvoluted spectra reveal the presence of phosphate groups in a slightly high ratio due to the high content of P2O5 in the composition.  相似文献   

14.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

15.
The specific features and possible mechanisms of transformation of the intermediate-range order structure in the Na2O-B2O3 system are investigated as a function of the composition and temperature by analyzing the integrated intensities of the characteristic bands at 808, 770–780, and 750–760 cm?1 (due to the vibrations of boroxol, triborate, and di-triborate rings, respectively) in the Raman spectra of glasses and melts in this system. It is demonstrated that an increase in the Na2O concentration leads to sequential transformations of boroxol rings into triborate groups and then into di-triborate groups. An increase in the temperature results in a decrease in the fraction of main structural units joined into superstructural units. The concentration of different borate rings can change depending on the temperature due to both the more random distribution of main units in the melt structure as compared to the glass structure and the formation of nonbridging bonds within superstructural units. Moreover, different superstructural units can transform into each other.  相似文献   

16.
Cerium oxide is one of the most important rare earth elements that is introduced into glass compositions due to its great effects on the optical properties. CeO2 was introduced in Hench’s patented SiO2-Na2O-CaO-P2O5 glasses with different concentrations in order to study its effect on the optical behavior of this glass including optical band gap, transmittance, reflectance and refractive index and to give a complete view for the optical properties on cerium oxide-doped silicate glasses.  相似文献   

17.
The effect of the relative volume of the conducting phase on the electroconductivity of phase-separated glasses in the ternary system Na2O–B2O3–SiO2, whose compositions are on the same glass transition isotherm at 550°C, is investigated. It is demonstrated that the electroconductivity of phase-separated sodium borosilicate glasses does not depend on the relative volume of the conducting phase (within the limits from 0.3 to 0.9) under the condition that its composition invariable.  相似文献   

18.
The quaternary glasses of mixed divalent oxides including ZnO, MgO, CdO within a phosphate network former were prepared. Vanadium pentoxide was introduced as a dopant in the range from 0.5 to 3%. Optical and infrared absorption studies for all glass samples were carried out. The optical spectra reveal the presence of both V3+ and V4+ ions in the studied host mixed divalent oxides phosphate glass. Fourier transform infrared absorption spectral analysis indicates the appearance of distinct vibrational bands due to the presence of characteristic phosphate groups depending on the glass composition and the ratio of V2O5 content. The optical band gap and Urbach energy were calculated and discussed in relation to the effect of V2O5 content. Finally, the glasses were optically and structurally examined affter gamma irradiation with a dose of 80 KGy.  相似文献   

19.
The kinetics of crystal nucleation is investigated in sodium calcium silicate glasses of two compositions (22.4 and 24.4 mol % Na2O), which belong to the Na2SiO3—CaSiO3 pseudobinary join and, according to the phase diagram, lie in the region of the formation of solid solutions between the compositions Na2O · 2CaO · 3SiO2 and Na2O · CaO · 2SiO2. The stationary rate of crystal nucleation of Na2O · 2CaO · 3SiO2-based solid solutions is measured as a function of temperature. It is shown that the maximum stationary rate of nucleation increases with an increase in the sodium oxide content in the initial glasses. The experimental data are analyzed in the framework of the classical nucleation theory.Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Soboleva, Yuritsyn, Ugolkov.  相似文献   

20.
A new version of the STRUCTON-1.2 computer program (2009) has been presented. The program combines the algorithm for calculating real distributions of Q n structons in binary silicate melts (with allowance made for their disproportionation) and the statistical simulation of molecular-mass distributions of polymerized ions at different temperatures. This model has been used to perform test calculations for two melts in the Na2O-SiO2 system (Na6Si2O7, Na6Si3O9). The results of the calculations have made it possible to trace variations in the set and concentrations of chain and ring silicon-oxygen complexes with a decrease in the temperature in the order: stochastic molecular-mass → distribution molecular-mass distribution at T = 2000 K → molecular-mass distribution at the liquidus temperature. The main result of these calculations is that the dominant species of silicon-oxygen anions at the liquidus temperatures (in contrast to the stochastic distributions) exactly correspond to the stoichiometry of the initial melts: the Si2O76− chain anions and (Si n O3n )3n ring complexes are dominant in the Na6Si2O7 and Na6Si3O9 melts, respectively. It has been established that, with a decrease in the temperature, the average size of polymer complexes varies weakly in the Na6Si2O7 melt but increases by a factor of approximately 1.5 in the metasilicate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号