首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the assessment of the impacts of climate change on water resources in the Aliakmon river basin, Northern Greece, and on some critical water management issues, such as reservoir storage and water supply of the city of Thessaloniki. A monthly conceptual water balance model was calibrated using historical hydrometeorological data. This model was applied to estimate runoffs in the entrance of the Polyfyto reservoir under two different equilibrium scenarios (UKHI, CCC) referring to 2050. Reduction of the mean annual runoff, mean winter runoff and summer runoff would occur. By using these scenarios, the sensitivity of the risk associated with the water supply for the city of Thessaloniki was evaluated under conditions of altered runoff. Increases of the risks associated with the annual quantities of water supply were observed, particularly under the UKHI scenario.  相似文献   

2.
Quantifying the Urban Water Supply Impacts of Climate Change   总被引:6,自引:2,他引:4  
The difference in timing between water supply and urban water demand necessitates water storage. Existing reservoirs were designed based upon hydrologic data from a given historical period, and, given recent evidence for climatic change, may be insufficient to meet demand under future climate change scenarios. The focus of this study is to present a generally applicable methodology to assess the ability of existing storage to meet urban water demand under present and projected future climatic scenarios, and to determine the effectiveness of storage capacity expansions. Uncertainties in climatic forcing and projected demand scenarios are considered explicitly by the models. The reservoir system in San Diego, California is used as a case study. We find that the climate change scenarios will be more costly to the city than scenarios using historical hydrologic parameters. The magnitude of the expected costs and the optimal investment policy are sensitive to projected population growth and the accuracy to which our model can predict spills.  相似文献   

3.
The effects of climate change on meteorology, hydrology and ecology have become a priority area for research and for water management. It is crucial to identify, simulate, evaluate and, finally, adopt water resources management strategies to overturn the impacts of climate change. This paper is dealing with the assessment of climate change impacts on the availability of water resources and the water demands and the evaluation of water resources management strategies in the Lake Karla watershed, central Greece and it is a contribution to the “HYDROMENTOR” research project. The outputs of the Canadian Centre for Climate Modelling Analysis Global Circulation Model CGCM3 were downscaled using a statistical hybrid method to estimate monthly precipitation and temperature time series for present and future climate periods. The analysis was conducted for two future periods 2030–2050 and 2080–2100 and three SRES scenarios (A2, A1B and B1). The surface water and groundwater have been simulated for present and future climate periods using a modelling system, which includes coupled hydrologic models. Two operational strategies of hydro-technical project development are coupled with three water demand strategies. Overall, eight water management strategies are evaluated for present climate conditions and twenty four water management strategies for future climate conditions have been evaluated. The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is large and it is expected to become critical in the future, even though the impact of climate change on the meteorological parameters is very moderate.  相似文献   

4.
Global climate change is predicted as a result of increased concentrations of greenhouse gasses in the atmosphere. It is predicted that climate change will result in increasing temperature by 2 to 6°C and a possible reduction of precipitation of up to 16% in the Mediterranean basin. In this study, the West Bank is taken as a case study from the Mediterranean basin to evaluate the effects of such climate change on water resources availability and agricultural water demands. Due to the uncertainty in climate change impacts on temperature and precipitation, a number of scenarios for these impacts were assumed within the range of predicted changes. For temperature, three scenarios of 2, 4 and 6°C increase were assumed. For precipitation, two scenarios of no change and 16% precipitation reduction were assumed. Based on these scenarios, monthly evapotranspiration and monthly precipitation excess depths were estimated at seven weather stations distributed over the different climatic and geographical areas of the West Bank. GIS spatial analyses showed that the increase in temperature predicted by climate change could potentially increase agricultural water demands by up to 17% and could also result in reducing annual groundwater recharge by up to 21% of existing values. However, the effects of reduced precipitation resulting from climate change are more enormous as a 16% reduction in precipitation could result in reducing annual groundwater recharge in the West Bank by about 30% of existing value. When this effect is combined with a 6°C increase in temperature, the reduction in groundwater recharge could reach 50%.  相似文献   

5.
Abstract

The potential impact of global climate change is one of the least addressed factors in water resources planning in developing countries. The potential impacts of climate change are examined for Jordan, where a methodology is presented for improved management of water demand under the uncertainties associated with climate change. A temperature/precipitation sensitivity model is constructed and combined with water demand forecasts to project deficits for the year 2020. Deficit reducing options are then evaluated in terms of social and economic viability. The study concludes that only some of the deficits may be alleviated, illustrating the significance of considering climate change in planning for countries that already experience water imbalances.  相似文献   

6.
The impacts of climate change on hydrology and water resources in the Vuoksi watershed in eastern Finland were studied in order to assess the possibilities to adapt lake regulation to the projected changes. A conceptual watershed model and several climate scenarios were used to estimate the effects of climate change on three lakes in the Vuoksi watershed for 2010–2039, 2040–2069 and 2070–2099. The adaptation possibilities were studied by using alternative regulation strategies. In Lake Pielinen the impacts of these water level changes on social, economic and ecological indicators were assessed with two different outflow strategies. According to the results, climate change will alter snow accumulation and melt and therefore cause large seasonal changes in runoff and water levels. Runoff and water levels will decrease during late spring and summer and increase during late autumn and winter. In some lakes current calendar-based regulation practices and limits, which have been developed based on past hydrology, may not be appropriate in the future. Modifying the regulation practices and limits is a necessary and effective way to adapt to climate change.  相似文献   

7.
The North Saskatchewan River basin is a large watershed in central Alberta that provides water for a range of stakeholders, including large municipalities, agricultural operations, power generation, and resource extraction industries. This study assesses potential future changes in snowpack for the North Saskatchewan River watershed in response to a range of GCM-derived climate warming scenarios representing the periods from 2010-2039 (2020s), 2040-2069 (2050s), and 2070-2099 (2080s). The GENESYS (GENerate Earth SYstems Science input) spatial hydrometeorological model is applied to simulate potential changes in the zero degree isotherm, precipitation phase, watershed average maximum spring snow water equivalent (SWE), the dates of maximum and minimum SWE, and snowmelt period for these future climate scenarios. Climate warming is likely to result in an upwards shift in elevation of the zero degree isotherm, with a transition to more precipitation occurring as rain than snow. Although watershed average maximum SWE may not change under future conditions, the timing of spring snowmelt onset is likely to change under the future climate scenarios applied. It is demonstrated that increased air temperatures are expected to result in substantial changes in snowpack processes in the North Saskatchewan River watershed.  相似文献   

8.
Ramteke  Gajanan  Singh  R.  Chatterjee  C. 《Water Resources Management》2020,34(13):4233-4252

Climate change triggers changes in temperature, precipitation, evapotranspiration, etc. and has a significant impact on water resources in many regions. Considering the increasing scarcity of water as a result of climate change, conservation of water and groundwater recharge have become crucial factors for water resources planning and management. In this paper, an attempt is made to study the detailed hydrological behaviour of a treated watershed using physically based distributed hydrological modelling system MIKE SHE to assess the impact of conservation measures on watershed hydrology considering future climate change. Three hypothetical management scenarios are simulated for the period 2010–2040. RegCM4 regional climate model is used in the study for RCP 4.5 and RCP 8.5 scenarios. Detailed hydrological water balance is extracted for individual years from 1979 to 2009 to compare relevant components. The evaluation for base period shows 10.06% reduction in surface runoff and 11.33% enhancement in groundwater recharge. Further simulation with RCP 4.5 and RCP 8.5 scenarios show notable reduction in surface runoff and increase in groundwater recharge. The structures in the micro-watershed influence the surface runoff and increase infiltration into the soil, resulting in higher groundwater recharge. MIKE SHE simulations for various structures management scenarios establish the role of conservation measures in reducing surface runoff and enhancing groundwater recharge under substantial effect of climate change. The results will assist in decision-making on watershed development plans in quantitative terms, including planning for water conservation measures in the face of climate change.

  相似文献   

9.
Climate Change Impacts Assessment using Statistical Downscaling is observed to be characterized by uncertainties resulting from multiple downscaling methods, which may perform similar during training, but differs in projections when applied to GCM outputs of future scenarios. The common wisdom in statistical downscaling, for selection of downscaling algorithms, is to select the model with the best overall system performance measure for observed period (training and testing). However, this does not guarantee that such selection will work best for any rainfall states, viz., low rainfall, or extreme rainfall. In the present study, for Assam and Meghalaya meteorological subdivision, India, three downscaling methods, Linear Regression (LR), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are used for simulating rainfall with reanalysis data and similar training and testing performances are obtained for observed period. When the developed relationships are applied to GCM output for future (21st century), differences are observed in downscaled projections for extreme rainfalls. ANN shows decrease in extreme rainfall, SVM shows increase in extreme rainfall and LR shows first decrease and then increase in extreme rainfall. Such results motivate further investigation, which reveals that, although, the overall performances of training and testing for all the transfer functions are similar, there are significant differences, when the performance measures are computed separately for low, medium, and high rainfall states. To model such uncertainty resulting from multiple downscaling methods, different transfer functions (LR, ANN and SVM) are used for different rainfall states (viz., low, medium and high), where they perform best. The rainfall states are predicted from large scale climate variables using Classification and Regression Tree (CART). As muti-model averaging (with equal weights or performance based weights) is commonly used in climatic sciences, the resulting output are also compared with the average of multiple downscaling model output. Rainfall is projected for Assam and Meghalaya meteorological subdivision, using this logic, with multiple GCMs. GCM uncertainty, resulting from the use of multiple GCMs, is further modeled using reliability ensemble averaging. The resultant Cumulative Distribution Function (CDF) of projected rainfall shows an increasing trend of rainfall in Assam and Meghalaya meteorological subdivision.  相似文献   

10.
With a yearly precipitation of 200 mm in most of the country, Jordan is considered one of the least water-endowed regions in the world. Water scarcity in Jordan is exacerbated by growing demands driven by population and industrial growth and rising living standards. Major urban and industrial centers in Jordan including the Capital Amman are concentrated in the northern highlands, mostly contained within the boundaries of the Zarqa River Watershed (ZRW). The ZRW is the third most productive basin in the greater Jordan River System. King Talal Dam was built a few kilometers upstream of the Zarqa-Jordan confluence to regulate its input mostly for the benefit of agricultural activities in the Jordan Valley. Concerns regarding the sensitivity of the ZRW to potential climate change have prompted the authors to carry out the current study. The methodology adopted is based on simulating the hydrological response of the basin under alternative climate change scenarios. Utilizing the BASINS-HSPF modeling environment, scenarios represent ing climate conditions with ±20% change in rainfall, and 1°C, 2°C and 3.5°C increases in average temperature were simulated and assessed. The HSPF model was calibrated for the ZRW using records spanning from 1980 through 1994. The model was validated against an independent data record extending from 1995 through 2002. Calibration and verification results were assessed based on linear regression fitting of monthly and daily flows. Monthly calibration and verifications produced good fit with regression coefficient r values equal to 0.928 and 0.923, respectively. Assessment based on daily records show much more modest r value of 0.785. The study shows that climate warming can dramatically impact runoffs and groundwater recharge in the ZRW. However the impact of warming can be greatly influenced by significant changes in rainfall volume.  相似文献   

11.
The Climate Change Act 2008 requires a series of assessments of the risks of climate for the UK, under both current conditions and over the long term, to 2100. This paper describes the research completed on the impacts of climate change on the UK water sector, involving stakeholder engagement and a mix of literature review, expert elicitation and broad-scale quantitative analysis to develop ten climate change risk metrics. These include measures of the demand for water, impacts on supply, water quality and asset performance using future scenarios based on the UK Climate Projections 2009 and future population projections from the Office for National Statistics. The analysis has resulted in a number of key findings that can help to inform policy in different parts of the UK. Overall the assessment showed that there is likely to be increased pressure on water resources in the UK. These pressures need to be considered in long term plans so that the needs of different users are met without impacting on the environment.  相似文献   

12.
The effects of a non-station ary climate on a water management system in the Warta River Catchment in Central Poland which already suffers from seasonal water deficits are exam ined in this paper. To determine a range of possible implications of global change on the region of interest, two scenarios were selected for the study: the warm-dry scenario predicted by the GFDL model, and warm scenario obtained from the GISS model. It is shown that the basin's water supply and demand are both sensitive and vulnerable to clim atic changes. Possible adaptation options to cope with further degradation of domestic, industrial and agricultural water supplies are recommended.  相似文献   

13.
Daily VEMAP output from the Hadley Coupled Climate Model (HadCM2) and land use projections from the Southeastern Michigan Council of Governments are used to examine the impacts of climate change and land use change on a regional watershed in southeastern lower Michigan. The precipitation, temperature, moisture, and solar radiation output from HadCM2 are processed before they are used as input to a modified version of the Biosphere-Atmosphere Transfer Scheme (BATS). The modified BATS model (BATS/HYDRO) includes the original 18 BATS land use types along with six new urban land classes as well as an improved surface runoff model, which accounts for impervious surfaces and depression storage. The daily VEMAP output is verified against observations and shown to be appropriate for use as input to the BATS/HYDRO model. The BATS/HYDRO model is then tested with observed NCEP/NCAR Reanalysis Data and shown to reproduce observed runoff for the period 1990 to 1992 with minimal tuning of initial soil moisture content and daily rainfall distribution. The BATS/HYDRO model is then run using VEMAP output as input for two time periods, 1994 to 2003 and 2090 to 2099 and two land use scenarios, current and future. Model results show that changing climate and changing land use will increase the percentage of precipitation that results in surface runoff from 17.1% to 21.4%. This 4.3% increase is partitioned into a 2.5% increase due to climate change and a 1.6% increase due to land use change.  相似文献   

14.
A multi-country, multi-sector computable general equilibrium (CGE) model is used for the first time to evaluate the economic and water resource availability effects of trade liberalization (removal of import tariffs) and facilitation (reducing non-tariff barriers) under climate change in the Nile Basin. The analysis uses the GTAP 9 Database and the GTAP-W model that distinguishes between rainfed and irrigated agriculture and implements water as a factor of production directly substitutable in the production process of irrigated agriculture. A full trade liberalization and improved trade facilitation scenario is considered with and without climate change. The study reveals that trade liberalization and facilitation generates substantial economic benefits and enhances economic growth and welfare in the Nile basin. The effect of instituting a free trade policy on water savings is found to be limited, while climate change improves water supply and hence irrigation water use, enhancing economic growth and welfare in the basin.  相似文献   

15.
气候变化对大型水利工程的影响   总被引:2,自引:2,他引:0  
气候变化将导致流域降雨径流关系、水文极端事件的大小和频率发生改变,影响大型水利工程的建设标准、规模和运行规程。以三峡工程和南水北调工程为例,介绍了气候变化对大型水利工程设计、运行等方面的可能影响。  相似文献   

16.
Consideration of different Statistical Downscaling (SD) models and multi-sources global climate models’ (GCMs) data can provide a better range of uncertainty for climatic and statistical indices. In this study, results of two SD models, ASD (Automated Statistical Downscaling) and SDSM (Statistical Downscaling Model), were used for uncertainty analysis of temperature and precipitation prediction under climate change impacts for two meteorological stations in Iran. Uncertainty analysis was performed based on application of two GCMs and climate scenarios (A2, A1B, A2a and B2a) for 2011–2040, 2041–2070 and 2071–2100 future time slices. A new technique based on fuzzy logic was proposed and only used to describe uncertainties associated with downscaling methods in temperature and precipitation predictions. In this technique, different membership functions were defined to fuzzify results. Based on these functions width, precipitation had higher uncertainty in comparison with the temperature which could be attributed to the complexity of temporal and local distribution of rainfall. Moreover, little width of membership functions for temperatures in both stations indicated less uncertainty in cold months, whereas the results showed more uncertainty for summer. The results of this study highlight the significance of incorporating uncertainty associated with two downscaling approaches and outputs of GCMs (CGCM3 and HadCM3) under emission scenarios A2, A1B, A2a and B2a in hydrologic modeling and future predictions.  相似文献   

17.
18.
Climate change affects hydropower production by modifying total annual inflow volumes and their seasonal distribution. Moreover, increasing air temperatures impact electricity consumption and, as a consequence, electricity prices. All together, these phenomena may lead to a loss in revenue. We show that an adequate management of hydropower plants mitigates these losses. These results are obtained by resorting to an interdisciplinary approach integrating hydrology, economy and hydropower management in an interdependent quantitative model.  相似文献   

19.
Abstract

The greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) concentrations in the atmosphere have increased very much since the industrial revolution. The greenhouse gas effect has been projected to cause a global average temperature increase on the order of 1.4 to 5.8°C over the period of 1990 to 2100. The global average annual precipitation is projected to increase during the 21st century due to the greenhouse effect. The impact of climate change on hydrology and water resources in the three catchments of Swaziland (Komati, Mbuluzi and Ngwavuma) has been evaluated using General Circulation Model results (rainfall, potential evapotranspiration, air temperature etc.) as inputs to a rainfall runoff model. Three General Circulation Models (GCMs) namely: Canadian Climate Change Equilibrium (CCC-EQ); Geophysical Fluid Dynamics Laboratory (GFDL) and United Kingdom Transient Resilient (UKTR) were found appropriate for use to project the temperature and precipitation changes for Swaziland for year 2075. This information was used to generate the temperature, precipitation and potential evapotranspiration values for the three catchments for year 2075 which was input into a calibrated WatBall rainfall runoff model. Simulation results without taking into consideration of water use projections show that there will be high flows during the summer months but low flows during the winter months. Simulation results after taking into consideration of water use projections show a water deficit from June to September in both the Komati, and Ngwavuma catchments and a water deficit from May to September in the Mbuluzi catchment. This means that the environmental water needs and Swaziland's water release obligation in the three catchments to South Africa and Mozambique will not be met during the winter months under expected climate change conditions.  相似文献   

20.

A challenge for climate impact studies is the identification of a sub-set of climate model projections from the many typically available. Sub-selection has potential benefits, including making large datasets more meaningful and uncovering underlying relationships. We examine the ability of seven sub-selection methods to capture low flow and drought characteristics simulated from a large ensemble of climate models for two catchments. Methods include Multi-Cluster Feature Selection (MCFS), Unsupervised Discriminative Features Selection (UDFS), Diversity-Induced Self-Representation (DISR), Laplacian score (LScore), Structure Preserving Unsupervised Feature Selection (SPUFS), Non-convex Regularized Self-Representation (NRSR) and Katsavounidis–Kuo–Zhang (KKZ). We find that sub-selection methods perform differently in capturing varying aspects of the parent ensemble, i.e. median, lower or upper bounds. They also vary in their effectiveness by catchment, flow metric and season, making it very difficult to identify a best sub-selection method for widespread application. Rather, researchers need to carefully judge sub-selection performance based on the aims of their study, the needs of adaptation decision making and flow metrics of interest, on a catchment by catchment basis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号