首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The structural changes of the supported vanadium oxide in the V2O5/TiO2(anatase) EUROCAT EL10V8 powder catalyst during reduction and oxidation at 420 and 490 °C were studied with in-situ X-ray absorption spectroscopy (XAS). The Vanadium K-edge XAS results are compared with pure bulk V2O5. For the reduction–oxidation cycle at 420 °C, similar structural changes as for bulk V2O5 were observed for the supported vanadium oxide: a reduction to the VO2 structure and re-oxidation back to V2O5. After reduction at 490 °C however, a different structure was obtained: very regular “VO6” octahedra with a V2.8+ valence. This may point to a structural support effect.  相似文献   

2.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

3.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

4.
The catalytic behavior of a series of VOx/α-Al2O3 catalysts for the partial oxidation of methane has been evaluated. Samples with different vanadia loading were prepared from NH4VO3 and V(AcAc)3. Characterization performed by TPR and oxygen uptake measurements indicates that different VOx species are present on the samples. The catalytic patterns indicate that each V-surface species possesses different activity and selectivity. Isolated vanadates are the most active and selective towards HCHO, while V2O5 crystallites are detrimental to the catalytic performance.  相似文献   

5.
In this study, ultra-thin nanobelts of Ag2V4O11/Ag were successfully synthesized. The synthesized ultra-thin nanobelts of Ag2V4O11/Ag are highly crystalline and the thickness is found to be about 5 nm. A lithium battery using ultra-thin nanobelts of Ag2V4O11/Ag as the active materials of the positive electrode exhibits a high initial discharge capacity of 276 mAh g−1, corresponding to the formation of LixAg2V4O11 (x = 6). With increased cycling, the electrode made of ultra-thin nanobelts of Ag2V4O11/Ag tends to loose electrochemical activity due to Ag+ ions in the ultra-thin nanobelts of Ag2V4O11 were reduced and new phase was formed.  相似文献   

6.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

7.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker.  相似文献   

8.
SmYb1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.15) ceramics are pressureless-sintered at 1973 K for 10 h in air. The structure and electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and impedance spectroscopy measurements. SmYb1−xMgxZr2O7−x/2 ceramics exhibit a defect fluorite-type structure. The measured electrical conductivities of SmYb1−xMgxZr2O7−x/2 ceramics obey the Arrhenius relation, and electrical conductivity of each composition increases with increasing temperature from 673 to 1173 K. At identical temperature levels, the electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics gradually increases with increasing magnesia content. SmYb1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The electrical conductivity obtained in SmYb1−xMgxZr2O7−x/2 ceramics reaches the highest value of 2.72 × 10−3 S cm−1 at 1173 K for the SmYb0.85Mg0.15Zr2O6.925 ceramic.  相似文献   

9.
Mesoporous TiO2 was prepared by simply controlling the hydrolysis of Ti(OBu)4 with the help of acetic acid. The mesoporous TiO2 had a well-crystallized anatase phase and a high surface area of 290 m2 g−1 with a pore size of about 4 nm. The anatase phase and the mesoporous structure were maintained in the VOx/TiO2 catalyst with a monolayer dispersion of V2O5, however, the surface area decreased to 126 m2 g−1. The catalyst was highly active and selective for methanol oxidation, giving about 55% conversion of methanol and 85% selectivity to dimethoxymethane at 423 K.  相似文献   

10.
Cr-doped Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) with trigonal structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content. Li9V2.8Cr0.2(P2O7)3(PO4)2 compound presents the good electrochemical rate and cyclic ability. The enhancement of rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability during the proper amount of Cr-doping (x = 0.2) in V sites.  相似文献   

11.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

12.
Adsorption of NO on vanadia–titania samples pre-subjected to different reduction treatments has been studied by FTIR spectroscopy. When the NO adsorption is performed at 85 K on oxidized samples, antisymmetric NONO species, typical for V5+ sites, are detected and characterized by bands at 1779 and 1686 cm−1. At ambient temperature, however, adsorption is negligible and only with time reactive adsorption occurs producing NO+ (2120 cm−1), nitro/nitrato species (bands in the 1650–1100 cm−1 region) and weakly adsorbed NO (broad band at 1915 cm−1). Adsorption of NO at ambient temperature on reduced samples results in the formation of two types of species: (i) V4+(NO)2 dinitrosyls characterized by νs(NO) and νas(NO) at 1903–1880 and 1769–1753 cm−1, respectively, and (ii) V3+(NO)2 complexes, which give rise to νs(NO) at 1834–1822 cm−1 and νas(NO) at 1697–1685 cm−1. At low temperature the dinitrosyls are transformed into species in which more than one (NO)2 dimer is attached to one cationic site. Addition of O2 to NO, preadsorbed on reduced vanadia–titania samples, results in a fast oxidation of the V3+(NO)2 species, whereas the V4+(NO)2 complexes are more stable and do not disappear completely in the presence of oxygen. The results obtained suggest that NO is a convenient probe molecule for the analysis of the oxidation state of vanadium in vanadia–titania catalysts. To prevent oxidation of reduced vanadium sites, low equilibrium pressures of NO and registration of the IR spectrum soon after the NO admission are recommended. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The electrodeposition of tungsten in ZnCl2-NaCl-KCl-KF-WO3 melt at 250 °C was further studied to obtain a thicker deposit. In the ordinary electrolysis at 0.08 V vs. Zn(II)/Zn, the current density decreased from 1.2 mA cm−2 to 0.3 mA cm−2 in 6 h. A thickness of the obtained tungsten layer was 2.1 μm and the estimated current efficiency was 93%. A supernatant salt and a bottom salt were sampled after 6 h from the melting and were analyzed by ICP-AES and XRD. It was found that the soluble tungsten species slowly changes to insoluble ones in the melt. The soluble species was suggested to be WO3F anion. One of the insoluble species was confirmed to be ZnWO4 and the other one was suggested to be K2WO2F4. Electrodeposition was carried out under the same condition as above except for the intermittent addition of WO3 every 2 h. The current density was kept at the initial value and the thickness was 4.2 μm. The intermittent addition of WO3 was confirmed to be effective to obtain a thicker tungsten film.  相似文献   

14.
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software.  相似文献   

15.
The effect of O2 and N2O on alkane reactivity and olefin selectivity in the oxidative dehydrogenation of ethane, propane, n-butane, and iso-butane over highly dispersed VOx species (0.79 V/nm2) supported on MCM-41 has been systematically investigated. For all the reactions studied, olefin selectivity was significantly improved upon replacing O2 with N2O. This is due to suppressing COx formation in the presence of N2O. The most significant improving effect of N2O was observed for iso-butane dehydrogenation: S(iso-butene) was ca. 67% at X(iso-butane) of 25%.Possible origins of the superior performance of N2O were derived from transient experiments using 18O2 traces. 18O16O species were detected in 18O2 and 18O2–C3H8 transient experiments indicating reversible oxygen chemisorption. In the presence of alkanes, the isotopic heteroexchange of O2 strongly increased. Based on the distribution of labeled oxygen in COx and in O2 as well as on the increased COx formation in sequential O2–C3H8 experiments, it is suggested that non-lattice oxygen species (possibly of a bi-atomic nature) originating from O2 are non-selective ones and responsible for COx formation. These species are not formed from N2O.  相似文献   

16.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

17.
In this paper the effect of the vanadium oxide loading on the surface vanadia structure and the activity as well as selectivity in the catalytic reduction of NO with NH3 was studied for a V2O5/TiO2 model system. A series of TiO2 (WO x stabilized anatase) supported vanadia catalysts with varying loadings were characterized by laser Raman spectroscopy, 51V MAS-NMR, V K XANES. To determine the acidic properties, DRIFTS measurements were done with pyridine adsorbed on the samples. The measurements indicate that with increasing active phase loading square pyramidal coordinated surface vanadia species are replaced by an amorphous highly dispersed vanadium oxide phase with a coordination like V2O5. In addition, the ratio of Brønsted to Lewis acid sites is shifted from a comparatively low to an equal level at high loadings. This structural change is accompanied by a clearly improved catalytic activity and selectivity.  相似文献   

18.
In this work, two materials for secondary lithium battery cathodes formed by polyaniline-V2O5 and sulfonated polyaniline-V2O5, which have a higher charge capacity than the V2O5 xerogel, were synthesized. X-ray absorption and Fourier transform infrared spectroscopies were employed to analyze the short-range interactions in these materials. Based on these experiments, it was possible to observe significant differences in the symmetry of the VO5 units, and this was attributed to the intimate contact between V2O5 and the polymers, and to some flexibility of the VO5 square pyramids due to the low range order of the nanocomposites.  相似文献   

19.
Trimerization of isobutene to produce isobutene trimers has been investigated over WOx/ZrO2 catalysts that were obtained by wet-impregnation and successive calcination at high temperatures. Very stable isobutene conversion and high selectivity for trimers are attained over a WOx/ZrO2 catalyst obtained by calcination at 700 °C. From the XRD study it can be understood that tetragonal ZrO2 is beneficial for stable performance; however, monoclinic ZrO2 is not good for trimerization. Nitrogen adsorption and FTIR experiments suggest that amorphous WOx/ZrO2 is inefficient catalyst even though it has high surface area and high concentration of acid sites. The observed performance with the increased selectivity and stable conversion demonstrates that a WOx/ZrO2 having tetragonal zirconia, even with decreased porosity and acid sites, is one of the best catalysts to exhibit stable and high conversion, high selectivity for trimers and facile regeneration.  相似文献   

20.
The generation of active chlorine on Ti/Sn(1−x)Ir x O2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L−1) and a low current density (5 mA cm−2) it was possible to produce up to 60 mg L−1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1−x)Ir x O2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm−2 and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 × 10−4 mol L−1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号