首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis is presented of the effect of the protective cover on the acoustic response of a miniature silicon microphone. The microphone diaphragm is contained within a small rectangular enclosure and the sound enters through a small hole in the enclosure’s top surface. A numerical model is presented to predict the variation in the sound field with position within the enclosure. An objective of this study is to determine up to which frequency the pressure distribution remains sufficiently uniform so that a pressure calibration can be made in free space. The secondary motivation for this effort is to facilitate microphone design by providing a means of predicting how the placement of the microphone diaphragm in the package affects the sensitivity and frequency response. While the size of the package is typically small relative to the wavelength of the sounds of interest, because the dimensions of the package are on the order of the thickness of the viscous boundary layer, viscosity can significantly affect the distribution of sound pressure around the diaphragm. In addition to the need to consider viscous effects, it is shown here that one must also carefully account for thermal conductivity to properly represent energy dissipation at the system’s primary acoustic resonance frequency. The sound field is calculated using a solution of the linearized system consisting of continuity equation, Navier–Stokes equations, the state equation and the energy equation using a finite element approach. The predicted spatial variation of both the amplitude and phase of the sound pressure is shown over the range of audible frequencies. Excellent agreement is shown between the predicted and measured effects of the package on the microphone’s sensitivity.  相似文献   

2.
We have developed a microphone package using flip chip technology instead of chip and wire bonding to create smaller MEMS microphones. With this new packaging technology the transducer chip and an ASIC chip are flip chip bonded on a ceramic substrate. The package is sealed by a polymer foil laminated over the chips and by a metal layer. The sound port is on the bottom side in the ceramic substrate. In this paper the packaging technology is explained in detail and results of electro-acoustic characterization and reliability testing are presented. We will also explain the way which has led us from the packaging of Surface Acoustic Wave (SAW) components to the packaging of MEMS microphones.  相似文献   

3.
A condenser microphone design that can be fabricated using the sacrificial layer technique is proposed and tested. The microphone backplate is a 1-μm plasma-enhanced chemical-vapor-deposited (PECVD) silicon nitride film with a high density of acoustic holes (120-525 holes/mm2), covered with a thin Ti/Au electrode. Microphones with a flat frequency response between 100 Hz and 14 kHz and a sensitivity of typically 1-2 mV/Pa have been fabricated in a reproducible way. These sensitivities can be achieved using a relatively low bias voltage of 6-16 V. The measured sensitivities and bandwidths are comparable to those of other silicon microphones with highly perforated backplates. The major advantage of the new microphone design is that it can be fabricated on a single wafer so that no bonding techniques are required  相似文献   

4.
工业化硅微机械电容式麦克风的设计与性能计算   总被引:1,自引:0,他引:1  
董健 《传感技术学报》2008,21(4):619-623
给出了一种单芯片硅微机械电容式麦克风的结构设计,并针对此结构对其进行了动态特性分析计算。硅微机械电容式麦克风的两个电极由一个复合敏感膜和一个金属铜底板构成。复合敏感膜包括三层,中间一层是掺杂硼的多晶硅,上下两层是氮化硅,三层复合膜的厚度设计和制作工艺使复合膜处于轻微的拉应力状态。底板采用低温电镀铜技术制作,底板上分布有许多圆形通气孔来调节敏感膜与底板间的空气压膜阻尼。在复合敏感膜和金属铜底板之间采用牺牲层技术制作了一空气间隙,使复合敏感膜和一个金属铜底板之间构成一工作电容。在硅基体的背面采用湿法腐蚀出声音进口腔。针对这一结构我们对其动态特性进行了分析计算,计算出麦克风在9V偏置电压下开环灵敏度为4.99mV/Pa,麦克风最大偏置电压为32.83V,麦克风工作时的频率带宽为0~134kHz。分析结果表明该硅微机械电容式麦克风能满足工业界的使用要求。  相似文献   

5.
The fabrication process of a silicon condenser microphone and experimental results of the acoustic measurements are described. The microphone consists of two chips. One chip carries the 150 nm thick silicon nitride membrane, which has an area of 0.8 mm × 0.8 mm. The second chip contains the back electrode, the spacer and the contact pads of the microphone. In order to reduce the streaming resistances in the air gap, the back-electrode area is either structured with grooves by a plasma etching technique or with holes by an anisotropic etching technique. A frequency-independent sensitivity of 10 mV/Pa (open circuit, 1.8 mV/Pa measured) up to 30 kHz is obtained as a result of this structuring of the back-electrode area. Since the air-gap height is only 2 μm, the capacitance of the transducers ranges from 1 to 1.3 pF. The total size of the silicon microphone is 1.6 mm × 2 mm × 0.56 mm.  相似文献   

6.
7.
刚性表面球形传声器阵列是测量三维声场常用的前端,由于刚性球面对入射波声场有散射影响,直接测量值不是原入射波声场的声压值,因而不能使用在自由声场条件下建立的声场模型和近场声全息方法来重构入射波声场.通过刚性球体表面声波散射的数学模型,建立起入射波声压与发生散射后总声压之间的关系,进而通过刚性表面球形传声器阵列测量声压,计算入射波声场分布,并进行声源识别定位.通过仿真与实验,检验了球面入射波遇到刚性表面球体发生散射后,球体表面处声压分布的变化.由球面近场声全息方法,重构球形阵列表面及外部空间的入射波声场,检验了波数、重构距离参数变化对声场重构精度的影响.结果表明:采用刚性表面球形传声器阵列测得的声场总声压,运用根据声波散射模型建立的球面近场声全息方法,可以以一定的精度重构出入射波声场的三维空间分布.  相似文献   

8.
In this work, we developed a feasible way to package bulk acoustic waves chip with sandwich structure by inserting a polydimethylsiloxane (PDMS) layer as the adhesive between cover glass and silicon substrate. After spin-coating and curing process, a PDMS layer was formed on one side of the cover glass and then bonded to the silicon substrate with microchannels by oxygen plasma treating. Both simulation and experiment showed that the chip was not leaking and the acoustic waves produced by the piezoelectric transducer could be propagated through the PDMS layer. Finally, a standing wave field was formed in the microchannels. Compared with traditional chip bonded by anodic bonding, simulation results showed that this packaging method did decrease the acoustic pressure in the channel, but the reduction was acceptable. After optimizing the experimental parameters, we successfully aggregated 15-μm silica spheres under a very low input power (21 dBm) at a flow velocity of 1 ml/h, and the enrichment efficiency of silica spheres was greater than 97%.  相似文献   

9.
头佩式麦克风阵列在单兵便携反狙击声探测定位系统和机器人声定位系统中具有实际的应用价值。一般的声源定位方法是基于无遮挡的线性或非线性麦克风阵列。采用头佩式麦克风阵列,考虑到背向声源麦克风的低频声波由于头盔遮挡而发生的衍射作用,针对低频波段的声音信号进行定位算法的设计和研究。该算法利用低频声波的绕射路径计算时延,采用联合可控功率响应(SRP-PHAT)框架进行时延补偿搜索定位。实验表明,相比于普通的无遮挡定位算法,基于绕射路径的头佩式麦克风阵列定位方法通过综合利用背向声源的麦克风数据,明显地提高了定位的精度,这种精度的提升在选择1 kHz以内的信号频率窗口时达到最佳效果。  相似文献   

10.

In a fine pitch flip chip package, a laser-assisted bonding (LAB) technology has recently been developed to overcome several reliability and throughput issues in the conventional mass reflow (MR) and thermal compression bonding technology. This study investigated the LAB process for a flip chip package with a copper (Cu) pillar bump using numerical heat transfer and thermo-mechanical analysis. During the LAB process, the temperature of the silicon die was uniform across the entire surface and increased to 280 °C within a few seconds; this was high enough to melt the solder. The heat in the die was quickly conducted to the substrate through the Cu pillar bumps. Meanwhile, the substrate temperature was low and remained constant. Therefore, a stable solder interconnection was quickly achieved with minimal stress and thermal damage to the package. The substrate thickness, the number of Cu bumps, and the bonding stage temperature were found to be important factors affecting the heat transfer behavior of the package. The temperature of the die decreased when a thinner substrate, a higher number of Cu bumps, and a lower bonding stage temperature were used. If the temperature of the die was not sufficiently high, insufficient heat was transferred to the solder to melt it, resulting in incomplete solder joint formation. Thermo-mechanical analysis also showed that the LAB process produced lower warpage and thermo-mechanical strain than the conventional MR process. These results indicated that a LAB process using a selective local heating method would be beneficial in reducing thermo-mechanical stress and increasing throughput for the fine pitch flip chip packages.

  相似文献   

11.
芯片封装技术在芯片制造中占有非常重要的地位,而引线键合又占到芯片封装的90%以上.对热超声引线键合系统进行介绍,描述了引线键合系统各部分常用的计算理论基础,采用ANSYS9.0有限元软件建立了63kHz热超声引线键合换能器的有限元模型,计算得到了63kHz引线键合换能器在工作频率附近的模态,通过阻抗测试和振动测试,证实引线键合换能系统在工作时,工作模态和非工作模态都被激发,验证了有限元模态分析的正确性,也证明了有限元方法在引线键合系统分析过程中是有效的.  相似文献   

12.
为了保证多媒体教学正常进行,避免无线话筒在使用时出现同频干扰,提出了手持发射器的可调频设计方案.设计选用IAP15L2K61S2单片机为微控制器,利用单片机内部定时器并结合外部锁相倍频电路,产生几种不同频率的脉冲,作为音频信号的载波;利用音频芯片M62429控制音频信号幅度调节无线话筒音量,实现音频信号的可调频传输和音量调节功能.测试结果表明,该设计方案可产生多种频率稳定的脉冲信号作为音频信号载波,并具有音量控制功能,有一定的工程价值和良好的应用前景.  相似文献   

13.
《Advanced Robotics》2012,26(17):1941-1965
Abstract

This paper addresses online calibration of an asynchronous microphone array. Although microphone array techniques are effective for sound localization and separation, these techniques have two issues; geometry information on a microphone array or time-consuming measurements of transfer functions between a microphone array and a sound source is necessary, and a fully synchronous multichannel analog-to-digital converter should be used. To solve these issues, we proposed an online framework for microphone array calibration by combining simultaneous localization and mapping (SLAM), and beamforming. SLAM simultaneously calibrates locations of microphones and a sound source, and clocks differences between microphones every time a microphone array observes a sound event. Beamforming works as a cost function to decide the convergence of calibration by localizing the sound using the transfer functions calculated from the estimated microphone locations and clock differences. We implemented a prototype system based on the proposed framework using extended Kalman filter-based SLAM and delay-and-sum beamforming. The experimental results showed that the proposed framework successfully calibrated an eight-channel asynchronous microphone array both in a simulated and a real environment even when system parameters such as variances are set to be 10 times larger than the optimal values. Furthermore, the error of sound localization with the calibrated microphone array was as small as the desired one, that is, the grid size for beamforming.  相似文献   

14.
根据干涉原理,对基于低精细度法珀腔的光纤声传感器的敏感机理进行了理论分析,明确了采用单色光源工作时需要满足正交相位点和小信号的条件。采用ANSYS软件,对敏感声波的振膜进行了预应力振动模态和预应力谐响应有限元分析,仿真了在声波作用下振膜的振动特性,以及其频率响应特性。进一步分析了光纤法珀腔声传感器的灵敏度与材料、结构、光学、电学参量的关系,以及它的动态范围。  相似文献   

15.
设计了一种适合于高gn值压阻式微加速度计圆片级封装的结构,解决了芯片制造工艺过程中电极通道建立、焊盘保护、精确划片等关键技术。采用玻璃—硅—玻璃三层阳极键合的方式进行圆片级封装,较好地解决了芯片密封性、小型化和批量化等生产难题。在4 in生产线上制作的高gn值压阻式微加速度计样品,尺寸仅为1 mm×1 mm×0.8 mm;对传感器进行的校准与抗冲击性能测试,结果表明:样品具备105gn的抗冲击能力、0.15μV/gn/V的灵敏度以及200 kHz的谐振频率。  相似文献   

16.
A new approach to sound localization, known as enhanced sound localization, is introduced, offering two major benefits over state-of-the-art algorithms. First, higher localization accuracy can be achieved compared to existing methods. Second, an estimate of the source orientation is obtained jointly, as a consequence of the proposed sound localization technique. The orientation estimates and improved localizations are a result of explicitly modeling the various factors that affect a microphone's level of access to different spatial positions and orientations in an acoustic environment. Three primary factors are accounted for, namely the source directivity, microphone directivity, and source-microphone distances. Using this model of the acoustic environment, several different enhanced sound localization algorithms are derived. Experiments are carried out in a real environment whose reverberation time is 0.1 seconds, with the average microphone SNR ranging between 10-20 dB. Using a 24-element microphone array, a weighted version of the SRP-PHAT algorithm is found to give an average localization error of 13.7 cm with 3.7% anomalies, compared to 14.7 cm and 7.8% anomalies with the standard SRP-PHAT technique.  相似文献   

17.
吴东方  贾波 《传感技术学报》2007,20(7):1528-1530
设计了一种新型的全光纤干涉型型麦克风.通过构造由光纤耦合器和镀铝振膜组成的动态M-Z干涉光路,将外界声压对振膜的作用转化为对光路相位的调制,得到的输出光信号光电转换后可直接提取出原声音信号.整个光路和光纤探头部分无任何电的参与,具有抗电磁干扰、尺寸小、灵敏度高等优点.并通过实验对该光纤麦克风进行了测试,得到了较好的实验结果.  相似文献   

18.
可调控的局域声场在开发新型滤波器、传感器和声操控微器件等方面具有潜在应用前景。文章数值模拟研究了一种二维正方排列含缺陷孔声子晶体孔板表面的局域声场。计算结果表明,选择不同的共振频率可以调控含缺陷声子晶体孔板表面的声场形态。这是因为缺陷孔与周期孔的 Fabry-Perot共振频率不一致,导致含缺陷声子晶体孔板表面的耦合场有多种形态。该工作所设计的缺陷态声子晶体孔板,可为声场与微粒的精细相互作用研究提供声学载台。  相似文献   

19.
当前平面传声器阵列结合波束形成方法进行声源识别定位时,存在不能确定声源相对全息测量阵列距离的问题,提出了可识别声源深度的三维声聚焦波束形成方法。基于球面波声场模型和波束形成方法,在不同深度的平面上进行声聚焦,首先根据聚焦面上波束形成功率的最大点位置沿聚焦深度方向(即z方向)的轨迹变化判断声源在z方向的位置,再进一步确定声源在x和y方向的位置。为验证方法的有效性,在点声源构成的声场中进行了仿真验证,并且在全消声室内进行了单声源及多声源识别定位的实验验证。仿真结果和实验结果一致表明:该方法能够实现基于平面阵列的三维空间中声源的识别定位。  相似文献   

20.
In this paper, we have fabricated a new microphone using aluminum (Al) slotted perforated diaphragm and back plate electrode, and photoresist (AZ1500) sacrificial layer on silicon wafer. The novelty of this method relies on aluminum diaphragm includes some slots to reduce the effect of residual stress and stiffness of diaphragm for increasing the microphone sensitivity. The acoustic holes are made on diaphragm to reduce the air damping, and avoid the disadvantages of non standard silicon processing for making back chamber and holes in back plate, which are more complex and expensive. Photoresist sacrificial layer is easy to deposition by spin coater and also easy to release by acetone. Moreover, acetone has a high selectivity to resist compared to silicon oxide and Al, thus it completely removes sacrificial resist without incurring significant damage silicon oxide and Al. The measured zero bias capacitance is 17.5 pF, and its pull-in voltage is 25 V. The microphone has been tested with external amplifier and speaker, the external amplifier was able to detect the sound waves from microphone on speaker and oscilloscope. The maximum amplitude of output speech signal of amplifier is 45 mV, and the maximum output of MEMS microphone is 1.125 μV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号