首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fissuring mode of fracture in CANDU pressure tube material, and in particular Stage 1 crack growth (essentially flat J R curve) as observed in some irradiated compact toughness specimens has been investigated. Models are presented of the fracture process zone associated with a crack that tunnels at the specimen mid-section, which extends preliminary work reported earlier. Various types of process zone behaviour are analysed, and based on an appropriate value for J c, the J value associated with the cumulative mode of crack propagation in irradiated material, together with an estimate of the tensile stress at the leading edge of the process zone, the known failure mechanism (formation, growth and coalescence of voids) of the ligaments between the fissures is shown to be reasonably consistent with the experimental measurements of the fissure spacing and fissure length.  相似文献   

2.
In the present work, mode I and mode II tests were carried out on two low alloyed high strength steels. An asymmetrical four point bend specimen and J II-integral vs. crack growth resistance curve technique were used for determining the mode II elastic-plastic fracture toughness, J IIc · J II-integral expression of the specimen was calibrated by finite element method. The results indicate that the present procedure for determining the J IIc values is easy to use. Moreover, the mode I fracture toughness J Ic is very sensitive to the rolling direction of the test steels, but the mode II fracture toughness J IIc is completely insensitive to the rolling direction of the steels, and the J IIc /J Ic ratio is not a constant for the two steels, including the same steel with different orientations. Finally, the difference of the fracture toughness between the mode I and mode II is discussed with consideration of the different fracture mechanisms.  相似文献   

3.
The application of the J and the I-integrals to ductile fracture are discussed. It is shown that, because of the finite size of the fracture process zone (FPZ), the initiation value of the J-integral is specimen dependent even if the plastic constraint conditions are constant. The paradox that the I-integral for steady state elasto-plastic crack growth is apparently zero is examined. It is shown that, if the FPZ at the crack tip is modelled, the I-integral is equal to the work performed in its fracture. Thus it is essential to model the fracture process zone in ductile fracture. The I-integral is then used to demonstrate that the breakdown in applicability of the J-integral to crack growth in ductile fracture is as much due to the inclusion in the J-integral of progressively more work performed in the plastic zone as it is to non-proportional deformation during unloading behind the crack tip. Thus J R -curves combine the essential work of fracture performed in the FPZ with the plastic work performed outside of the FPZ. These two work terms scale differently and produce size and geometry dependence. It is suggested that the future direction of modelling in ductile fracture should be to include the FPZ. Strides have already been made in this direction.  相似文献   

4.
For characterization of the fracture resistance of materials used in the upper shelf toughness regime,J-R curves are widely considered the most promising candidates. However, there still remain problems concerning both the generation and measurement ofJ-R curves as material characterizing parameters and their application in ductile fracture analyses for failure prediction in polymeric materials. This paper reports the results of investigations conducted on two rubbertoughened nylons at room temperature. Two different methods ofJ-R curve determination are covered, namely multi-specimen and single specimen test methods. The resultingJ-R curves have also been evaluated to obtain values of the initiation toughness,J IC, following the extrapolation and interpolation schemes prescribed by ASTM E813-81 and ASTM E813-87 test procedures, respectively. The results show that the multiple specimen unloading method and the single specimen partial unloading compliance method can be used to generate comparable crack growth resistanceJ-R curves of the toughened nylons. The value ofJ IC for the crystalline rubber-toughened nylon was approximately twice the value obtained for the amorphous rubber-toughened nylon. The former material also exhibited a greater resistance to ductile crack growth.  相似文献   

5.
This paper presents results from an experimental programme to study size effects in J-R curves. Results are presented from unloading compliance R curve tests on different sized single edge notch bend specimens of nickel aluminium bronze and compared with previously published R curve data on a Ti3A1-2.5V titanium and an HY 100 steel alloy. The crack growth resistance was measured in terms of the standard fracture resistance J, J corrected for crack growth and the J modified parameter proposed by Ernst. It was observed that following a region of size independence small specimen J-R curves could fall either above or below the large specimen curve. It was found that although the limit to J controlled crack growth could be extended the limit is not unique but dependent on material type.  相似文献   

6.
It is now generally agreed that the applicability of a one-parameter J-based ductile fracture approach is limited to so-called high constraint crack geometries, and that the elastic-plastic fracture toughness J1c, is not a material constant but strongly specimen geometry constraint-dependent. In this paper, the constraint effect on elastic-plastic fracture toughness is investigated by use of a continuum damage mechanics approach. Based on a new local damage theory for ductile fracture(proposed by the author) which has a clear physical meaning and can describe both deformation and constraint effects on ductile fracture, a relationship is described between the conventional elastic-plastic fracture toughness, J1c, and crack tip constraint, characterized by crack tip stress triaxiality T. Then, a new parameter Jdc (and associated criterion, Jd=Jdc) for ductile fracture is proposed. Experiments show that toughness variation with specimen geometry constraint changes can effectively be removed by use of the constraint correction procedure proposed in this paper, and that the new parameter Jdc is a material constant independent of specimen geometry (constraint). This parameter can serve as a new parameter to differentiate the elastic-plastic fracture toughness of engineering materials, which provides a new approach for fracture assessments of structures. It is not necessary to determine which laboratory specimen matches the structural constraint; rather, any specimen geometry can be tested to measure the size-independent fracture toughness Jdc. The potential advantage is clear and the results are very encouraging.  相似文献   

7.
A theoretical model relating fracture toughness expressed as J IC and bulge ductility {ie71-1} for a material exhibiting linear elastic behavior at low temperature and elastic-plastic behavior at higher temperatures is proposed. This model shows a variation of J IC with {ie71-2} for linear elastic behavior and J IC with {ie71-3} for elastic-plastic behavior. The model contains three constants to be determined experimentally for a given material, specimen geometry and testing conditions. A case study on 1045 steel in the temperature range ?60 to 25°C confirms the validity of the model. The experimental results help in determining the size of the fracture zone ahead of the crack as well as the mechanisms for crack blunting and crack growth.  相似文献   

8.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to quantify mode I fracture toughness (KIc) of rock, and it has also been applied to mode II fracture toughness (KIIc) testing in some research on the basis of some assumptions about the crack growth process in the specimen. However, the KIc value measured using the CCNBD specimen is usually conservative, and the assumptions made in the mode II test are rarely assessed. In this study, both laboratory experiments and numerical modeling are performed to study the modes I and II CCNBD tests, and an acoustic emission technique is used to monitor the fracture processes of the specimens. A large fracture process zone and a length of subcritical crack growth are found to be key factors affecting the KIc measurement using the CCNBD specimen. For the mode II CCNBD test, the crack growth process is actually quite different from the assumptions often made for determining the fracture toughness. The experimental and numerical results call for more attention on the realistic crack growth processes in rock fracture toughness specimens.  相似文献   

9.
The effect of specimen size and geometry on the ductile crack growth resistance of a C-Mn steel has been investigated. The resistance, expressed in the form of J-R curves, was measured using the conventionally calculated J(Jr);(b/J×dJ/da) values. The results show that for specimens of given thickness the effect of specimen geometry was due to a change in the shear lip and not to the flat fracture contribution. This conclusion is consistent with the geometry invariance found in measurements of the crack opening displacement at the growing crack tip in the flat fracture region. In addition, it has been shown that J m can characterise crack growth resistance over a wider range of conditions than J r.
Résumé On a étudié les effets de la taille et de la géométrie d'une éprouvette sur la résistance à la croissance d'une fissure ductile dans un acier au C-Mn. Exprimée sous la forme de courbes J-R, la résistance a été mesurée par des valeurs de J calculées par voie conventionnelle (J r) et par la méthode de Ernst modifiée (J m), pour une gamme de géométries d'éprouvettes sollicitées en flexion et en traction. La résistance globale d'éprouvette ne présentant pas d'entaille latérale a été divisée en deux contributions, qui s'experiment par les zones de ruptures plates et de lèvres de cisaillement, que l'on trouve sur les surfaces de rupture.Grâce à une telle approche, on a ramené à des grandeurs rationnelles la taille et la géométrie d'une éprouvette, et on a déterminé les limites de croissance d'une fissure régies par J r et J m en termes de l'extension maximale admissible d'une fissure, et des valeurs minimales de (b/j×dJ/da).Les résultats indiquent que, pour des éprouvettes d'épaisseur donnée, l'effet de la géométrie d'une éprouvette est associé à une modification de la contribution des lèvres de cisaillement, et non de la portion plate de la rupture. Cette conclusion est compatible avec la constance de la géométrie que l'on observe dans des mesures du déplacement d'ouverture de la fissure à la pointe de la fissure en progrès dans la zone de rupture plate. En outre, on a montré que J m peut caractériser la résistance à la croissance d'une fissure, sur une gamme plus large de conditions que ne le fait J r.
  相似文献   

10.
This paper describes elastic–plastic crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) under mode I loading conditions using cohesive zone and modified boundary layer (MBL) models. For this purpose, we first explore the applicability of two existing, phenomenological cohesive zone models for FGMs. Based on these investigations, we propose a new cohesive zone model. Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T) specimens using the three cohesive zone models mentioned above. The crack growth resistance of the FGM is characterized by the J-integral. These results show that the two existing cohesive zone models overestimate the actual J value, whereas the model proposed in the present study closely captures the actual fracture and crack growth behaviors of the FGM. Finally, the cohesive zone models are employed in conjunction with the MBL model. The two existing cohesive zone models fail to produce the desired KT stress field for the MBL model. On the other hand, the proposed cohesive zone model yields the desired KT stress field for the MBL model, and thus yields J R curves that match the ones obtained from the SE(B) and SE(T) specimens. These results verify the application of the MBL model to simulate crack growth resistance in FGMs.  相似文献   

11.
Valid plane-stress fracture toughness evaluation of short fibre reinforced composites relies essentially on the successful separation of the energy absorbed in the localized crack-tip region out of the total energy absorbed by the cracked material body at large. Three different experimental techniques, all stemming from the energetic interpretation of theJ integral, are utilized and their relative merits in the characterization of fracture initiation in short glass fibre reinforced injection-moulded nylon 6.6 examined. Various theoretical aspects concerning these experimental methods are outlined. The rationale behind using a single-edge-notched tension type specimen for theJ c test is presented. TheJ c value obtained from the compliance calibration method and the quasistatic energy method agree closely and can be considered to be independent of pre-crack length and specimen geometry when the pre-crack length to specimen width ratio (a/w) is larger than 0.45. The extrapolation method fails nevertheless to yield a physically consistentJ c value, possibly due to its questionable theoretical representation. As no constraint on boundary conditions is necessitated during the course of crack extension, the quasistatic energy is physically more appealing.  相似文献   

12.
Abstract

It is proposed that a single CT specimen can be used for determining J 0.2 at two testing conditions, provided it can be ensured that the crack tip plastic zones for the two tests do not interfere. This is achieved by extending the crack at the end of the first fracture test by fatigue cycling at ambient temperature to obtain the starting crack for the second test. This method has been validated by testing thermally aged CT specimens of modified 9Cr - 1Mo steel at 653 K and 803 K. The Ja values obtained by a multispecimen method at a specific temperature were on a single curve irrespective of whether the data were generated from the first test or second test on that sample. Also, the Ja curves obtained using a single specimen normalisation method from data on first and second tests were within the expected specimen to specimen variation.  相似文献   

13.
The multiple specimen J 0.2/BL initiation fracture toughness test procedure from the ISO standard, ISO 12135:2002, is evaluated using the EURO fracture toughness data set. This standard is also compared with the ASTM standard, ASTM E 1820, multiple specimen J Ic procedure. The EURO round robin data set was generated to evaluate the transition fracture toughness methods for steels. However, many of the tests resulted in ductile fracture behavior giving final J versus ductile crack extension points. This is the information that is measured in a multiple specimen J initiation fracture toughness test. The data set has more than 300 individual points of J versus crack extension with four different specimen sizes. It may be the largest data set of that type produced for one material. Therefore, its use to determine J initiation values can provide an important evaluation of the standard procedures. The results showed that a J 0.2/BL value could be determined from the ISO standard for three of the four specimen sizes, the smallest size did not meet the specimen size requirement on J. The construction line slopes in this method are very steep compared with the ASTM construction line slopes. This resulted in low J initiation values, about a factor of two lower than the one from the ASTM method. Of the various criteria imposed to determine a valid J 0.2/BL value, the one limiting the maximum J value was the most questionable. It had an effect of eliminating small specimen data that was identical to acceptable large specimen data.  相似文献   

14.
The effect of plastic-flow constraint on the field of a crack, during stable propagation within the area, covered by the plastic zone at initiation of growth, has been examined. Plane strain, mode I and contained yielding have been considered. The material is homogeneous with elastic-plastic behavior, described by Hook's law, J 2-flow theory and isotropic hardening. The numerical investigation has been performed within the framework of a boundary layer formulation, whereby the remote loading is fully specified by the first two terms in Williams' expansion, characterized by K and T. It is shown, that a self-similar state is reached, after growth of the order of the fracture process zone size at initiation. The characteristic length of the self-similar field is the fracture process zone size. Under contained yielding, the self-similar field depends on an appropriately normalized T/K ratio, which is a measure of the deviation of the stress field from small scale yielding distribution at distances of the order of the damage process zone size. According to the analysis, the effect of constraint on near-tip triaxiality, during transient growth is moderate. Also the effect of constraint on crack growth resistance is weak at initiation and increases with crack propagation.  相似文献   

15.
This paper describes crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) using a cohesive zone ahead of the crack front. The plasticity in the background (bulk) material follows J2 flow theory with the flow properties determined by a volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model). A phenomenological, cohesive zone model with six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) describes the constitutive response of the cohesive zone. Crack growth occurs when the complete separation of the cohesive surfaces takes place. The crack growth resistance of the FGM is characterized by a rising J-integral with crack extension (averaged over the specimen thickness) computed using a domain integral (DI) formulation. The 3-D analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. The paper describes applications of the cohesive zone model and the DI method to compute the J resistance curves for both single-edge notch bend, SE(B), and single-edge notch tension, SE(T), specimens having properties of a TiB/Ti FGM. The numerical results show that the TiB/Ti FGM exhibits significant crack growth resistance behavior when the crack grows from the ceramic-rich region into the metal-rich region. Under these conditions, the J-integral is generally higher than the cohesive energy density at the crack tip even when the background material response remains linearly elastic, which contrasts with the case for homogeneous materials wherein the J-integral equals the cohesive energy density for a quasi-statically growing crack.  相似文献   

16.
Transferability of the specimen JR/J–T curve to the component level is an important issue in the field of fracture mechanics. Towards this goal, fracture experiments have been carried out on single‐edge bend (SE(B)) and compact tension (CT) specimens and throughwall circumferentially cracked straight pipes/elbows of 200 mm nominal bore (NB) diameter. The pipe material is SA 333 Gr 6 steel (low strength and high toughness material) and specimens are machined from the pipes. Subsequently, elastic–plastic finite‐element analyses have been carried out on these cracked components/specimens in order to evaluate the stress triaxiality levels. It is found that the triaxial levels for these cracked components are similar. Hence, similar fracture behaviour is expected for these components. Consequently, one of the pipe JR curves is used as a reference JR curve to consider the crack growth in the analysis and the load deformation behaviour of other pipes/elbows is predicted. The load deformation behaviour of the piping components is also predicted using an extrapolated JR curve from a specimen that exhibits the similar triaxiality level to that of the cracked components. The predicted results are in good agreement with the experiments.  相似文献   

17.
Most of the industrial applications involving use of high-strength low-alloy steels require good weldability. Thus it is important to characterize the properties of the welded steels, especially the heat affected zone. Attempts have been made to characterize the fracture toughness of the HAZ by the use of theJ-integral and the crack opening displacement. In the present study, the effect of addition of titanium, vanadium and niobium, as well as combinations of these, on the fracture toughness of the heat affected zone of welded steel plates is examined. Six compositions were used in this study. Three-point bending specimens as well as tensile specimens were prepared. The fracture surfaces were examined in a scanning electron microscope to determine the fracture mode as well as the extent of the stretch zone as the crack blunts. Calculation of the fracture toughness parameter,J lc, is carried out through a quantitative stereofractographic analysis of the stretch zone at the crack tip. The results show that there is a marked increase inJ lc due to the addition of the various alloying elements. Generally, the addition of niobium and titanium alone produce the highestJ lc due to the extent of grain refinement that these elements produce.  相似文献   

18.
Laboratory testing of fracture specimens to measure resistance curves (J − Δa) have focused primarily on the unloading compliance method using a single specimen. Current estimation procedures (which form the basis of ASTM E1820 standard) employ load line displacement (LLD) records to measure fracture toughness resistance data incorporating a crack growth correction for J. An alternative method which potentially simplifies the test procedure involves the use of crack mouth opening displacement (CMOD) to determine both crack growth and J. However, while the J-correction for crack growth effects adopted by ASTM standard holds true for resistance curves measured using load line displacement (LLD) data, it becomes unsuitable for J-resistance measurements based upon the specimen response defined in terms of load-crack mouth opening displacement (CMOD). Consequently, direct application of the evaluation procedure for J derived from LLD records in laboratory measurements of resistance curves using CMOD data becomes questionable. This study provides further developments of the evaluation procedure for J in cracked bodies that experience ductile crack growth based upon the eta-method and CMOD data. The introduction of a constant relationship between the plastic components of LLD (Δ p ) and CMOD (V p ) drives the development of a convenient crack growth correction for J with increased loading when using laboratory measurements of P-CMOD data. The methodology broadens the applicability of current standards adopting the unloading compliance technique in laboratory measurements of fracture toughness resistance data (J resistance curves). The developed J evaluation formulation for growing cracks based on CMOD data provides a viable and simpler test technique to measure crack growth resistance data for ductile materials.  相似文献   

19.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

20.
The influence of the specimen thickness B and the ligament length b on the J R -curves is numerically investigated for CT specimens. The thickness effect is taken into account with 2-D analyses by dividing a plain sided specimen into a plane stress part and a plane strain part. The fracture process is controlled by experimentally determined critical values of the crack tip opening displacement for crack growth initiation (CTODi) and the crack tip opening angle for stable crack growth (CTOAC). It is shown that for the global behaviour of a plain sided specimen, the B/b ratio is essential. The difference between the geometry dependence of the initiation value of the J-integral and the geometry dependence of the slope of the J R -curves is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号