首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-crystal and polycrystalline films of Mg-Al2O4 and MgFe2O4 were formed by two methods on cleavage surfaces of MgO single crystals. In one procedure, aluminum was deposited on MgO by vacuum evaporation. Subsequent heating in air at about 510°C formed a polycrystalline γ-Al2O8 film. Above 540°C, the γ-Al2O, and MgO reacted to form a single-crystal MgAl2O4 film with {001} MgAl2O4‖{001} MgO. Above 590°C, an additional layer of MgAl2O4, which is polycrystalline, formed between the γ-Al2O3 and the single-crystal spinel. Polycrystalline Mg-Al2O4 formed only when diffusion of Mg2+ ions proceeded into the polycrystalline γ-Al2O3 region. Corresponding results were obtained for Mg-Fe2O4. MgAl2O4 films were also formed on cleaved MgO single-crystal substrates by direct evaporation, using an Al2O3 crucible as a source. Very slow deposition rates were used with source temperatures of ∼1350°C and substrate temperatures of ∼800°C. Departures from single-crystal character in the films may arise through temperature gradients in the substrate.  相似文献   

2.
The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdelta G °f,ox=−23600 − 5.91 T (±150) J/mol—The 'second-law' enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.  相似文献   

3.
Solid-state compatibility and melting relations of MgAl2O4 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching selected samples located in the 65 wt% MgAl2O4, plane followed by microstructural and energy dispersive X-ray analysis. A projection of the liquidus surface of the primary crystallization volume of MgAl2O4 was constructed from CaO, SiO2 and exceeding Al2O3, not involved in stoichiometric MgAl2O4 formation; those three amounts were recalculated to 100 wt%. The temperature and character of six invariant points, where four solids co-exist with a liquid phase, were defined. One maximum point was localized and the positions of the isotherms were tentatively established. The effect of CaO, SiO2, and Al2O3 impurities on the high temperature behavior of spinel materials was also discussed.  相似文献   

4.
High-strain-rate superplasticity is attained in a 3-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystal (3Y-TZP) dispersed with 30 vol% MgAl2O4 spinel: tensile elongation at 1823 K reached >300% at strain rates of 1.7 × 10−2– 3.3 × 10−1 s−1. The flow behavior and the microstructure of this material indicate that the MgAl2O4 dispersion should enhance accommodation processes necessary for grain boundary sliding. Such an effect is assumed to arise from an enhancement of the cation diffusion by the dissolution of Al and Mg ions into the ZrO2 matrix and from stress relaxation due to the dispersed MgAl2O4 grains.  相似文献   

5.
Nanostructured MgAl2O4 spinel was synthesized by a direct conversion process from cubic γ-Al2O3. The effect of post-annealing temperature (300°, 500°, and 800°C) on MgAl2O4 phase formation was investigated using transmission electron microscopy, selected area electron diffraction (SAED), electron energy loss spectroscopy (EELS), and energy-dispersive spectroscopy (EDS). Relative diffraction intensities as well as lattice parameter measurements from SAED revealed that MgAl2O4 spinel structure starts forming at temperatures as low as 300°C. EELS and EDS spectrum images also revealed an increase in elemental homogeneity with increasing annealing temperature. The degree of ordering of Mg and Al between octahedral and tetrahedral sites has been determined from relative diffraction intensities. Results show that annealing to 800°C leads to a spinel phase with an order parameter of 0.78.  相似文献   

6.
A MgAl2O4 (MA) spinel layer was synthesized on Ti3AlC2 substrate through the molten salt synthesis (MSS) method. The Ti3AlC2 substrate was immersed in MgCl2·6H2O powders and treated at 800°, 850°, and 900°C for 4 h in air. A continuous and 10-μm-thick MgAl2O4 layer was obtained at 900°C, by which the surface hardness of Ti3AlC2 can be effectively improved. The combined scanning electron microscopy observations and crystal morphology simulation further revealed that the as-formed MgAl2O4 presents tetragonal bipyramids morphology with (400)-orientation.  相似文献   

7.
Interdiffusion coefficients in single-crystal MgO were determined using an MgO-MgAl2O4 diffusion couple. For a concentration of 1 mol% Al2O3 in MgO, the interdiffusion coefficient can be expressed as D =2.0±0.2 exp (−76,000±3,000/ RT ) for the MgO-MgAl2O4 couple. This relation compares well with previous measurements in the MgO-Al2O3 system. The interdiffusion coefficients, which increased with the mol fraction of cation vacancies, were in the range of 10−8 to 10−10 cm2s−1 for the concentrations and temperatures studied. Diffusion was enhanced below 1640°C if powdered MgAl2O4 was used. Self-diffusion coefficients for Al3+ ions in MgO were calculated; Al3+ diffuses faster than Cr3+ in MgO.  相似文献   

8.
The electrical conductivities of single crystal and polycrystalline MgAl2O4 and Y3Al5O12 were measured to 1260 K using a three-contact, guard-ring technique. The electrical conduction mechanisms change with temperature, with anomalous oxygen pressure and time-dependent inflections in log σ versus T−1 curves between 900 to 1000 K. The conduction processes of Y3Al5O12 and MgAl2O4 appear to be similar and possibly related to A13+ ion diffusion.  相似文献   

9.
The effect of Al8B4C7 used as an antioxidant in MgO–C refractories and the behavior of Al8B4C7 in CO gas were investigated in the present study. Al8B4C7 was found to react with CO gas, to form Al2O3( s ), B2O3( l ), and C( s ), at temperatures >1100°C. The Al2O3 reacts with MgO to form MgAl2O4 near the surface of the material. At the same time, B2O3( l ) evaporates and reacts with MgO, to form a liquid phase, at >1333°C, the eutectic point between 3MgO·B2O3 and MgO. The coexistence of the liquid and MgAl2O4 makes the protective layer more dense, thus inhibiting oxidation of the refractory. At >1333°C, the process apparently is controlled by oxygen diffusion, whereas it is controlled by chemical reaction when the temperature is <1333°C.  相似文献   

10.
The elastic moduli and fracture toughnesses of a series of PbO-ZnO-B2O3 glasses were measured for different PbO/ZnO ratios and for B2O3 contents from 30 to 70 mol%. Substituting ZnO for PbO increased both the elastic modulus and fracture toughness at all B2O3 levels with the fracture toughness being related to the elastic modulus. Structural effects on these properties are discussed.  相似文献   

11.
Active elements for humidity sensors based upon MgAl2O4 thin films or sintered pellets were investigated. Thin films were deposited on Si/SiO2 substrates by radiofrequency (rf) sputtering. Sintered MgAl2O4 pellets were prepared by traditional ceramic processing. Scanning electron microscopy (SEM) analysis showed that the thin films were rather dense and homogeneous, made up of clustered particles of about 20–30 nm, while the pellets showed a wide pore-size distribution. X-ray photoelectron spectroscopy (XPS) demonstrated that the thin films have a stoichiometry close to that of MgAl2O4. Sintered MgAl2O4 is crystalline, while it is disordered in thin-film form. The presence of two different components of the Al 2 p peaks was correlated with the structural difference between pellets and thin films. The relationship between good film–substrate adhesive properties and the chemical composition at the interface was studied. The electrical properties of the sensing elements were studied at 40°C in environments at different relative humidity (RH) values between 2% and 95%, using ac impedance spectroscopy. MgAl2O4 thin films showed interesting characteristics in terms of their use in humidity-measurement devices. Resistance versus RH sensitivity values showed variations as high as 4 orders of magnitude in the RH range tested for thin films, and 5 orders of magnitude for pellets. The differences in the electrical behavior of MgAl2O4 pellets and thin films were correlated with their different microstructures.  相似文献   

12.
An isothermal section of the ternary system MgO–Al2O3-Cr2O3 was determined at 1700°± 15°C to delineate the stability field for spinel crystalline solutions (cs). Crystalline solutions were found between the pseudobinary joins MgAl2O4–Cr2O3 and MgCr2O4-Al2O3, and the binary join MgAl2O4-MgO. The first two crystalline solutions exhibit cation vacancy models while the latter can probably be designated as a cation interstitial model. Precipitation from spinel cs may proceed directly to an equilibrium phase, (Al1-xCrx)2O3, with the corundum structure or through a metastable phase of the probable composition Mg(Al1-xCr)26O40. The composition and temperature limits were defined where the precipitation occurs via metastable monoclinic phases. The coherency of the metastable monoclinic phase with the spinel cs matrix can be understood by considering volume changes with equivalent numbers of oxygens and known crystallographic orientation relations. Electron probe and metallographic microscope investigations showed no preferential grain boundary precipitation.  相似文献   

13.
Solution calorimetry of MgAl2O4-Al8/3O4 solid solutions was performed in a molten 2PbO · B2O3 solvent at 975 K. The results indicate small negative heats of mixing, relative to spinel standard states for both end-members. These data were combined with information on the energetics of the α-γ transition in Al2O3 and on the MgAl2O4-Al8/3O4 (MgO-Al2O3) subsolidus phase relations to estimate the partial molar entropy of mixing of γ-Al8/3O4 in the solid solution. This entropy is much less positive than that calculated from several models for the configurational entropy of mixing of magnesium, aluminum, and vacancies on octahedral and/or tetrahedral sites. The data suggest a good deal of local order to be present in the solid solutions, consistent with negative enthalpies of mixing and entropies of mixing far less than ideal configurational values.  相似文献   

14.
MgAl2O4 microwave dielectric ceramics were modified by Zn substitution for Mg, and their dielectric characteristics were evaluated, along with their structures. Dense (Mg1− x Zn x )Al2O4 ceramics were obtained by sintering at 1550°–1650°C in air for 3 h, and the (Mg1− x Zn x )Al2O4 solid solution was determined in the entire composition range. With Zn substitution for Mg, the dielectric constant ɛ of MgAl2O4 just varied from 7.90 to 8.56, while the Q × f value had significantly improved up to a maximal value of 106 000 GHz at x =1.0. Moreover, the τf of MgAl2O4 ceramics had declined from −73 to −63 ppm/°C.  相似文献   

15.
The subsolidus phase equilibrium diagram for the pseudobinary join MgAl2O4-Ga2O3 was determined. The shape of the exsolution boundary was obtained by heat-treating samples pre- equilibrated at 1600°C. Crystalline solubility of Ga2O3 in MgAl2O4 decreased from 73 mole % at 1600°C to 55 mole % at 1200°C. The crystalline solution was formed by the replacement of Mg2+ions by Ga3+ ions to produce a cation defect spinel. The phase precipitated was the mono-clinic δ-Ga2O3 (=δ-Al2O3 structure). Changes in the ratios of relative X-ray diffraction intensities indicated that the crystalline solutions also disorder with temperature.  相似文献   

16.
Reactions between LiF and MgAl2O4 at temperatures up to 1500°C are examined with a variety of tools, including differential scanning calorimetry, thermo-gravimetric analysis, X-ray diffraction, and scanning electron microscopy. LiAlO2 and MgF2 are found to be the active reaction products at these temperatures. A transient liquid phase comprising MgF2 and LiF forms at intermediate temperatures, but then is consumed at higher temperatures during the reformation of MgAl2O4. If processed as an uncompacted powder mixture, all of the initial LiF in the system eventually vaporizes at temperatures exceeding 1300°C. A new reaction sequence relevant to the densification of LiF-doped MgAl2O4 spinel is proposed.  相似文献   

17.
An aluminum/MgAl2O4 in situ metal matrix composite has been synthesized using silica gel containing ∼98% SiO2 in an Al–5Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation have been discussed in detail. A transition phase of composition between MgO and MgAl2O4 has been detected in the SEM-EDS analysis of the particles extracted from the composite by a 25% NaOH solution. This confirms the gradual transformation of MgO to MgAl2O4 by the reaction 3SiO2( s )+2MgO( s )+4Al( l )→2MgAl2O4( s )+3Si( l ). The stoichiometry, n , of MgAl2O4 has been found to sustain close to 1 and the crystallite growth of MgAl2O4 has been stopped at D ∼30 nm in the composites held at 750°C up to 10 h.  相似文献   

18.
Using a novel experimental procedure in the field of ceramics/materials science that is based on the precise microanalysis (scanning electron microscopy, coupled with wavelength-dispersive spectroscopy) of the phases that are present in equilibrated specimens, the solid-state compatibility relations in the subsystem MgAl2O4-CaAl4O7-CaO-MgO and the melting relationships in the subsystems MgAl2O4-CaAl2O4-MgO and MgAl2O4-CaAl2O4-CaAl4O7 were established. The primary phase field of crystallization of spinel in the above-mentioned subsystem, MgAl2O4-CaAl4O7-CaO-MgO, was determined subsequently. The temperature, composition, and character of the ternary invariant points of the subsystem were established, and the ranges of the solid solutions in periclase, spinel, monocalcium aluminate, and dicalcium aluminate also were studied and determined, up to 1725°C.  相似文献   

19.
Solid-state compatibility and melting relationships in the subsystem Al2O3—MgAl2O4—CaAl4O7 were studied by firing and quenching selected samples located in the isopletal section (CaO·MgO)—Al2O3. The samples then were examined using X-ray diffractomtery, optical microscopy, and scanning and transmission electron microscopies with wavelength- and energy-dispersive spectroscopies, respectively. The temperature, composition, and character of the ternary invariant points of the subsystem were established. The existence of two new ternary phases (Ca2Mg2Al28O46 and CaMg2Al16O27) was confirmed, and the composition, temperature, and peritectic character of their melting points were determined. The isothermal sections at 1650°, 1750°, and 1840°C of this subsystem were plotted, and the solid-solution ranges of CaAl4O7, CaAl12O19, MgAl2O4, Ca2Mg2Al28O46, and CaMg2Al16O27 were determined at various temperatures. The experimental data obtained in this investigation, those reported in Part I of this work, and those found in the literature were used to establish the projection of the liquidus surface of the ternary system Al2O3—MgO—CaO.  相似文献   

20.
Formation of N-phase in the system Mg,Si,Al/N,O was studied. Its composition was confirmed to be MgAl2Si4O6N4 (2Si2N2OMgAl2O4). Subsolidus phase relationships in the MgO–Si2N2O-Al2O3 system were determined. The results are discussed by comparing with two similar systems, CaO-and Y2O3–Si2N2O–Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号