首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photocatalytic capabilities of titanium dioxide are widely published. Reported applications of titania coatings include air purification, water purification and self-cleaning. Suspension spray has been highlighted as a possible route for the deposition of highly active nanostructured TiO2 coatings. Published work has demonstrated the capabilities of suspension plasma spray and high-velocity suspension flame spray; however, little work exists for suspension flame spray (SFS). Herein, these three suspension spray processes are compared as regards their capability to produce photocatalytic TiO2 coatings and their potential for industrial scale-up. A range of coatings were produced using each process, manipulating coating parameters in order to vary phase composition and other coating characteristics to modify the activity. The coatings produced varied significantly between the processes with SFS being the most effective technique as regards future scale-up and coating photoactivity. SFS coatings were found to be up to nine times more active than analogous coating produced by CVD.  相似文献   

2.
Titanium dioxide (TiO2) is a promising material for photocatalyst coatings. However, it is difficult to fabricate a TiO2 coating with anatase phase by conventional thermal spray processes due to a thermal transformation to rutile phase. In this paper, anatase TiO2 coatings were fabricated by the cold spray process. To understand the influence of process gas conditions on the fabrication of the coatings, the gas nature (helium or nitrogen) and the gas temperature are investigated. It was possible to fabricate TiO2 coatings with an anatase phase in all spraying conditions. The process gas used is not an important factor to fabricate TiO2 coatings. The thickness of the coatings increased with the process gas temperature increasing. It indicates that the deposition efficiency of the sprayed particles can be enhanced by controlling the spray conditions. The photocatalytic activity of the coatings is similar or better than the feedstock powder due to the formation of a large reaction area. Concludingly, cold spraying is an ideal process for the fabrication of a TiO2 photocatalyst coating.  相似文献   

3.
为提高二氧化钛涂层的防污性能,采用KH-550硅烷改性锐钛矿型TiO_2颗粒,并充分分散于二氧化钛凝胶涂层中。通过降解亚甲基蓝溶液、细菌贴附试验、藻类贴附试验,分别评价了涂层的光催化性能、抗菌性能及抗藻类附着性能,并利用激光共聚焦显微镜及扫描电子显微镜对藻类在涂层表面的附着情况进行分析。结果表明,添加TiO_2纳米颗粒涂层的防污性能较未添加TiO_2纳米颗粒涂层有较大程度的提高。添加粒径为5~10 nm TiO_2颗粒的二氧化钛涂层对小球藻、三角褐指藻及小新月菱形藻的附着降低率分别达到了92.1%、71.5%和62.1%,相较于纯二氧化钛涂层对3种藻类的附着降低率分别提高了29.7%、68.4%和43.5%。TiO_2颗粒的加入可以有效地提高涂层的光催化性能,光催化使得涂层具有亲水、抗菌及自清洁的性能进而有利于提高涂层的防污性能。  相似文献   

4.
Hydroxyapatite (HA)–titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA–TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH? and CO3 2? was observed, which was favorable for the biomedical applications.  相似文献   

5.
This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS) supported on titanium sub-oxide (TiO2?x ) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO2?x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25® photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.  相似文献   

6.
A large concern surrounding stainless steel surfaces is the ability of bacteria to grow and attach to them quite easily. One possible solution to destroy these pathogens is to coat surfaces with a biocidal agent. The photocatalytic effect of titanium dioxide (TiO2) is known to have a bactericidal effect. Coatings of TiO2 were prepared on 1010 low carbon steel substrates using an oxy-acetylene flame spray torch. TiO2 coatings containing 5 wt.% copper (Cu) were fabricated to increase the bactericidal effect of the coating. After deposition, the coatings were polished to an average roughness of 1 μm. Solutions of Pseudomonas aeruginosa (PAK) bacteria were placed onto the coating surface for periods of up to 3 h, and the amount of surviving bacteria were counted. Some samples were irradiated with white light and other samples were held in a dark chamber. In coatings of copper-free flame-sprayed TiO2, the high flame temperatures facilitated the conversion of the anatase phase to the rutile phase, which limited the photocatalytic destruction of the bacterial cells. However, TiO2-copper composite coatings showed a large bactericidal effect, killing approximately 75% of PAK bacterial cells after 3 h. Under the same conditions, the TiO2-copper composite coatings had the same bactericidal capabilities as pure copper surfaces, with the composite coatings showing improved bactericidal performance when exposed to light. It was proposed that increased concentrations of reactive oxide species produced due to TiO2 photocatalysis improved the performance of the irradiated TiO2-copper composite coatings.  相似文献   

7.
The effects of the titanium dioxide (TiO2) particles size on the friction coefficient and corrosion performance of the Ni-P/TiO2 composite coatings before and after heat treatment at 400°C for 1h have been investigated. Pin-on-disc analysis results have revealed that the highest and the lowest friction coefficients belonged, respectively, to the simple Ni-P coating and the Ni-P/TiO2 composite coating containing TiO2 particles of the average size of 0.1 μm (μ ~ 0.62 against 0.52). Eventually, a relative reduction in the corrosion resistance and the friction coefficient (as low as μ ~ 0.38) have been observed after heat treatment of Ni-P and Ni-P/TiO2 composite coatings.  相似文献   

8.
Lasers have been used to improve the ultimate performance of thermal spray coatings for specific applications, but the full potential of additional laser treatments must be further explored. Laser treatments (auxiliary processes) can be applied before, during or after thermal spraying (main process), leading to a wide range of coating improvements (microstructure, adhesion, etc.). The aim of this review is to introduce the most significant laser treatments for thermal spray applications. The potential improvements for thermal spray coatings are illustrated by a selection of representative research cases. Laser pretreatments (ablation and texturing) promote coating/substrate adhesion and are suitable to prepare the surface of sensitive substrates such as aluminum, titanium, or magnesium alloys. The use of these techniques, which leads to several benefits such as surfaces free of grit-particle inclusions, directly improves the quality of coatings. Laser treatments applied simultaneously during the spraying process deeply modify the coatings microstructure. These hybrid technologies allow in situ laser melting of coatings, resulting in improved mechanical properties and enhanced wear and corrosion behaviors. Finally, laser posttreatments can improve coatings density and adhesion, and also induce phase transformations and structure refinement. As a summary, laser treatments seem particularly promising for improving the thermal spray coating microstructure and the coating/substrate adhesion. In addition, they offer a more environmentally friendly alternative to the conventional surface preparation treatments.  相似文献   

9.
A new atmospheric pressure plasma electrolytic deposition process has been developed for the production of crystalline titanium dioxide films on metal substrates. The process occurs in a liquid precursor composed of titanium tetraisopropoxide and absolute ethanol. A plasma discharge is created and confined around the cathode in a superheated vapour sheath surrounded by the liquid phase, inducing the production of a nano-crystalline TiO2 coating at the surface of the cathode. The analysis of the structure and composition of these TiO2 coatings have been carried out by Scanning Electron Microscopy, Transmission Electron Microscopy, Raman and X-Ray Photoelectron Spectroscopies and X-Ray Diffraction. The produced crystalline titanium dioxide coatings are very adherent to the substrate and present a dendritic-like structure. We have moreover demonstrated that it is possible to adjust easily its composition by a post-processing calcination. Such characteristics make these films very interesting for photocatalysis, solar cells and gas sensing applications, and promise therefore some useful industrial benefits.  相似文献   

10.
In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, A12O3, and Cr3C2-MCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. The results from the above tests are discussed here. It is evident that the D-gun sprayed coatings consistently exhibit denser microstructures and higher hardness values than their plasma sprayed counterparts. The D-gun coatings are also found to unfailingly exhibit superior tribological performance superior to the corresponding plasma sprayed coatings in all wear tests. Among all the coating materials studied, D-gun sprayed WC-12%Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al2O3 shows least wear resistance to every wear mode.  相似文献   

11.
Crystalline titanium dioxide (TiO2) coatings have been widely used in photo-electrochemical solar cell applications. In this study, TiO2 and carbon-doped TiO2 coatings were deposited onto unheated titanium and silicon wafer substrates using a DC closed-field magnetron sputtering system. The resultant coatings had an amorphous structure and a post-deposition heat treatment is required to convert this amorphous structure into the photoactive crystalline phase(s) of TiO2. This study investigates the use of a microwave plasma heat treatment as a means of achieving this crystalline conversion. The treatment involved placing the sputtered coatings into a 2.45 GHz microwave-induced nitrogen plasma where they were heated to approximately 550 °C. It was observed that for treatment times as short as 1 min, the 0.25-μm thick coatings were converted into the anatase crystalline phase of TiO2. The coatings were further transformed into the rutile crystalline phase after treatments at higher temperatures. The doping of TiO2 with carbon was found to result in a reduction in this phase transformation temperature, with higher level of doping (up to 5.8% in this study) leading to lower anatase-to-rutile transition temperature. The photoactivity performance of both doped and un-doped coatings heat-treated using both furnace and microwave plasma was compared. The carbon-doped TiO2 exhibited a 29% increase in photocurrent density compared to that observed for the un-doped coating. Comparing carbon-doped coatings heat-treated using the furnace and microwave plasma, it was observed that the latter yielded a 19% increase in photocurrent density. This enhanced performance may be correlated to the differences in the coatings' surface morphology and band gap energy, both of which influence the coatings' photoabsorption efficiency.  相似文献   

12.
Cold gas spray (CGS) titanium coatings have been produced to obtain porous and rough coatings with enhanced mechanical performance. The coatings from optimal spraying conditions reached tensile strength values up to 40?MPa, shear strength up to 39?MPa and a loss mass of 37?mg/100 cycles in abrasive testing, values in accordance with the ASTM standards to be applied for orthopaedic joint prostheses. An innovative hierarchical structure (micro-nano) consisted of a TiO2 nanotubes top layer obtained by anodisation onto a CGS Ti coating. The present paper focuses on the characterisation of both surfaces, as-sprayed CGS Ti layer and double Ti-TiO2 layer, in terms of mechanical properties, surface topography and wettability (contact angle). There were not significant changes in micro-roughness, Ra~40?µm and Ra~30?µm, but a significant decrease in contact angle, from ≈26° up to 0°, was observed between these two structures. This behaviour indicates that the combination of the CGS?+?anodising results in promising high roughness superhydrophilic surfaces, ideal for biomedical applications.  相似文献   

13.
The pore structure in nano-porous TiO2 coatings influences the ion diffusion property and the photovoltaic performance of dye-sensitized solar cells. In this paper, TiO2 coatings were deposited by vacuum cold spray (VCS) using a strengthened nanostructured powder. The pore structure, ion diffusion, and dye infiltration properties were examined to understand the coating deposition mechanism. Results showed that the pores in the VCS TiO2 coatings presented a bimodal size distribution with two peaks at ~15 and ~50?nm. Based on the impact behavior of spray powder particles, a deposition model was proposed to explain the formation mechanism of the pores in the VCS coating using strengthened nanostructured powder. It was found that, compared to the conventional unimodal-sized nano-pores in TiO2 coatings, the bimodal-sized nano-pores contributed to a higher ion diffusion coefficient of the coatings and thereby a higher photovoltage of the solar cells.  相似文献   

14.
Fracture toughness measurements are critical for materials design and characterization but can be difficult to perform on overlay coatings due to a range of geometric factors and substrate constraints. Thermal spray (TS) coatings bring additional complications to measurement interpretation due to their defected, anisotropic structures. Toughness of free-standing coatings has been studied in the past, and literature results indicate promise in measurement with a range of methods. One of these, single-edge, notched beam (SENB) method offers a straight forward approach for measuring fracture toughness and lends itself well for use with TS coatings. In this work, SENB method is used with deliberate modifications to specific parameters of the test specimens, namely free-standing thickness, notch depth, notch sharpness, and heat treatment state, to ascertain the impact of these modifications on the measurement results for air plasma spray Al2O3. Additionally, two methods adapted from the literature, a modified adhesion method and a tensile elongation method, are evaluated for use with three different Al2O3 coatings, including by air plasma spray, flame spray, and high velocity oxy-fuel processes. Results indicate good correlation between SENB and the modified methods for all three coating variants and give insight into the orientation-dependent toughness properties of TS coatings.  相似文献   

15.
Titanium dioxide (TiO2) coatings have potential applications in biomedical implants or as photo-catalytic functional systems. Cold spraying is a well-established method for metal on metal coatings. In cold spraying, the required heat for bonding is provided by plastic deformation of the impacting ductile particles. In contrast, few authors have investigated the impact phenomena and layer formation process for spraying brittle ceramic materials on ductile metal surfaces. In this study, the formation of TiO2 coatings on aluminum, copper, titanium, and steel substrates was investigated by SEM, TEM, XRD, and Raman spectroscopy. The results show that the deposition efficiency depends on spray temperature, powder properties, and in particular on substrate ductility, even for impact of ceramic particles during a second pass over already coated areas. Ceramic particles bond to metallic substrates showing evidence of shear instabilities. High-resolution TEM images revealed no crystal growth or phase transitions at the ceramic/metal interfaces.  相似文献   

16.
Graphite is one of the candidate materials proposed for application in pyrochemical reprocessing plants involving aggressive molten chloride environment. Post treatments are promising techniques for the improvement of properties of thermal spray coatings for different industrial applications. In the present work, the effect of post treatments like vacuum annealing (VA) and laser melting (LM) on the microstructure and chemical modification of plasma sprayed Al2O3-40 wt.% TiO2 coatings over high density (HD) graphite substrates has been investigated. When compared with sprayed coatings (SC), VA coatings showed cluster morphology and LM coatings exhibited homogenous microstructure. On laser melted surfaces networks of cracks were observed. XRD studies showed that the metastable γ-Al2O3 phase present in the SC is transformed to stable α-Al2O3 after post treatments. In LM coatings Al2TiO5 phase was more predominant in contrast to SC and VA coatings. The microhardness enhancement was observed in case of LM coating compared to the VA and SC. Due to elimination of coating defects in LM samples, there is a considerable reduction in the surface roughness.  相似文献   

17.
热喷涂制备 TiO2 光催化涂层研究进展   总被引:1,自引:3,他引:1  
TiO2光催化剂因其利用可持续的太阳光进行光催化反应,在环境保护、医疗卫生等领域具有潜在的应用价值,近年来引起了研究者的广泛关注。目前,颗粒状TiO2催化剂获得了一定的实际应用,但在液相中使用后需要回收,不仅增加了工艺的复杂性,而且提高了设备等成本的投入。负载型催化剂和涂层技术是将TiO2固定在载体上,可有效避免颗粒状催化剂难回收的问题。在众多涂层制备技术中,热喷涂技术可快速高效大面积地制备TiO2光催化涂层,且涂层机械性能优异,喷涂成本低廉,因而使TiO2的工业化制备和应用更具前景。综述了近年来国内外制备TiO2涂层常用的传统热喷涂技术、改进后的液相热喷涂技术和冷喷涂技术,并论述了影响TiO2光催化性能的材料相组分、涂层结构和元素掺杂等因素,总结了相应的性能改进措施,指出了目前TiO2光催化涂层的应用研究存在的问题和研究方向。  相似文献   

18.
Titanium (Ti) and its alloys are widely used as candidate materials for biomedical implants. Despite their good biocompatibility and corrosion resistance, these materials suffer from corrosion after implantation in biological environments. The aim of this research work is to study the effect of two coatings on biocompatibility and corrosion behavior of Ti-6Al-4V biomedical implant material. Hydroxyapatite (HA) and hydroxyapatite/titanium dioxide (HA/TiO2) coatings were thermal-sprayed on Ti-6Al-4V substrates. In the latter case, TiO2 was used as a bond coat between the substrate and HA top coat. The corrosion behavior of coated and un-coated samples in Ringer’s solution was studied by potentiodynamic and linear polarization techniques. Before and after corrosion testing, XRD and SEM/EDS techniques were used for the analysis of phases formed and to investigate microstructure/compositional changes in the coated specimens. The cellular response was analyzed by the MTT (microculture tetrazolium) assay. The results showed that both the HA, as well as, the HA/TiO2 coatings significantly increased the corrosion resistance of the substrate material. The HA coating was found to be more biocompatible as compared to the un-coated and HA/TiO2-coated Ti-6Al-4V alloy.  相似文献   

19.
采用微弧氧化法及微弧氧化-水热法对纯钛进行改性,制备了TiO_2与TiO_2-HA生物陶瓷膜层,通过溶血率实验、动态凝血时间实验和血小板黏附实验等方面评价其血液相容性。结果表明:各试样的溶血率都远小于5%,均符合医用材料的溶血率要求,不会产生溶血作用。与钛基TiO_2生物陶瓷膜层和钛基材相比,钛基TiO_2-HA生物陶瓷膜层的溶血率更低,动态凝血时间曲线变化更为缓慢,黏附的血小板更少,且变形程度更轻,具有更好的抑制血小板的聚集与变形的性能,血液相容性更优。  相似文献   

20.
Amorphous titanium dioxide coatings were deposited at high pressure (about 5 Pa) on cold soda-lime glass by reactive magnetron sputtering. In order to obtain anatase form known for its photocatalytic properties, an annealing at 450 °C was required. The morphology of the photocatalyst coating, examined by scanning and transmission electron microscopy, exhibits a columnar structure with closed intercolumnar porosity. The concentration profile obtained by means of sputtered neutral mass spectrometry revealed the presence of sodium into the TiO2 coating due to the Na diffusion from the soda-lime glass during the annealing step. This level of contamination reaches 5.5 at.% in the whole film thickness. Since the presence of Na in TiO2 coatings is harmful to the photocatalytic properties, a silicon nitride (SiNx) coating, acting as a Na diffusion barrier, was intercalated between the glass substrate and the TiO2 coating. The concentration profiles showed that the TiO2 coating deposited on SiNx/glass substrate is sodium-free. Furthermore, photocatalytic tests revealed that TiO2/SiNx/glass system is about threefold more efficient than TiO2/glass, showing both the poisoning effect of Na and the superior efficiency of SiNx as a diffusion barrier. To illustrate this, diffusion barriers made of silicon dioxide have also been grown and compared to SiNx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号