首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

2.
Experimental results describing the product distribution during the reduction of NO by H2 on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts are presented in the temperature range 30–500 °C and H2/NO feed ratio range of 0.9–2.5. A microkinetic model that describes the kinetics of NO reduction by H2 on Pt/Al2O3 is proposed and most of the kinetic parameters are estimated from either literature data or from thermodynamic constraints. The microkinetic model is combined with the short monolith flow model to simulate the conversions and selectivities corresponding to the experimental conditions. The predicted trends are in excellent qualitative and reasonable quantitative agreement with the experimental results. Both the model and the experiments show that N2O formation is favored at low temperatures and low H2/NO feed ratios, N2 selectivity increases monotonically with temperature for H2/NO feed ratios of 1.2 or less but goes through a maximum at intermediate temperatures (around 100 °C) for H2/NO feed ratios 1.5 or higher. Ammonia formation is favored for H2/NO feed ratios of 1.5 or higher and intermediate temperatures (100–350 °C) buts starts to decompose at a temperature of 400 °C or higher. The microkinetic model is used to determine the surface coverages and explain the trends in the experimentally observed selectivities.  相似文献   

3.
A systematic mechanistic study of NO storage and reduction over Pt/Al2O3 and Pt/BaO/Al2O3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al2O3 is an order of magnitude higher than on Pt/Al2O3 showing participation of Ba in the storage even in the absence of gas phase O2. Either oxygen spillover or transient NO oxidation to NO2 is postulated as the first steps for NO storage on Pt/BaO/Al2O3. The storage on Pt/Ba/Al2O3 commences as soon as Pt–O species are formed. Post-storage H2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H2 pump-probe experiments. NO conversion to N2 by decomposition is sustained on clean Pt using excess H2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N2 and N2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H2 feed ratio.  相似文献   

4.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


5.
Changbin Zhang  Hong He   《Catalysis Today》2007,126(3-4):345-350
The TiO2 supported noble metal (Au, Rh, Pd and Pt) catalysts were prepared by impregnation method and characterized by means of X-ray diffraction (XRD) and BET. These catalysts were tested for the catalytic oxidation of formaldehyde (HCHO). It was found that the order of activity was Pt/TiO2  Rh/TiO2 > Pd/TiO2 > Au/TiO2  TiO2. HCHO could be completely oxidized into CO2 and H2O over Pt/TiO2 in a gas hourly space velocity (GHSV) of 50,000 h−1 even at room temperature. In contrast, the other catalysts were much less effective for HCHO oxidation at the same reaction conditions. HCHO conversion to CO2 was only 20% over the Rh/TiO2 at 20 °C. The Pd/TiO2 and Au/TiO2 showed no activities for HCHO oxidation at 20 °C. The different activities of the noble metals for HCHO oxidation were studied with respect to the behavior of adsorbed species on the catalysts surface at room temperature using in situ DRIFTS. The results show that the activities of the TiO2 supported Pt, Rh, Pd and Au catalysts for HCHO oxidation are closely related to their capacities for the formation of formate species and the formate decomposition into CO species. Based on in situ DRIFTS studies, a simplified reaction scheme of HCHO oxidation was also proposed.  相似文献   

6.
The effect of additives on Pt-ZSM-5 catalysts was studied for the selective NO reduction by H2 in the presence of excess O2 (NO–H2–O2 reaction) at 100 °C. The reaction of NO in a stream of 0.08% NO, 0.28% H2, 10% O2, and He balance yielded N2 with less than 10% selectivity, which could not be increased by changing Pt loading or H2 concentration in the gas feed. Co-impregnation of NaHCO3 and Pt onto ZSM-5 decreased the BET surface area and the Pt dispersion. Nevertheless, the Na-loaded catalyst (Na-Pt-ZSM-5) exhibited the higher NOx conversion (>90%) and the N2 selectivity (ca. 50%). Such a high catalytic activity even at high Na loadings (≥10 wt.%) is completely contrast to other Na-added Pt catalyst systems reported so far. Further improvement of N2 selectivity was attained by the post-impregnation of NaHCO3 onto Pt-ZSM-5. In situ DRIFT measurements suggested that the addition of Na promotes the adsorption of NO as NO2-type species, which would play a role of an intermediate to yield N2. The introduction of Lewis base to the acidic supports including ZSM-5 would be applied to the catalyst design for selective NO–H2–O2 reaction at low temperatures.  相似文献   

7.
The selective catalytic reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the low-temperature range of 100–200 °C has been studied over Pt supported on a series of metal oxides (e.g., La2O3, MgO, Y2O3, CaO, CeO2, TiO2, SiO2 and MgO-CeO2). The Pt/MgO and Pt/CeO2 solids showed the best catalytic behavior with respect to N2 yield and the widest temperature window of operation compared with the other single metal oxide-supported Pt solids. An optimum 50 wt% MgO-50wt% CeO2 support composition and 0.3 wt% Pt loading (in the 0.1–2.0 wt% range) were found in terms of specific reaction rate of N2 production (mols N2/gcat s). High NO conversions (70–95%) and N2 selectivities (80–85%) were also obtained in the 100–200 °C range at a GHSV of 80,000 h−1 with the lowest 0.1 wt% Pt loading and using a feed stream of 0.25 vol% NO, 1 vol% H2, 5 vol% O2 and He as balance gas. Addition of 5 vol% H2O in the latter feed stream had a positive influence on the catalytic performance and practically no effect on the stability of the 0.1 wt% Pt/MgO-CeO2 during 24 h on reaction stream. Moreover, the latter catalytic system exhibited a high stability in the presence of 25–40 ppm SO2 in the feed stream following a given support pretreatment. N2 selectivity values in the 80–85% range were obtained over the 0.1 wt% Pt/MgO-CeO2 catalyst in the 100–200 °C range in the presence of water and SO2 in the feed stream. The above-mentioned results led to the obtainment of patents for the commercial exploitation of Pt/MgO-CeO2 catalyst towards a new NOx control technology in the low-temperature range of 100–200 °C using H2 as reducing agent. Temperature-programmed desorption (TPD) of NO, and transient titration of the adsorbed surface intermediate NOx species with H2 experiments, following reaction, have revealed important information towards the understanding of basic mechanistic issues of the present catalytic system (e.g., surface coverage, number and location of active NOx intermediate species, NOx spillover).  相似文献   

8.
The development of an activated carbon supported bimetallic catalyst for the simultaneous reduction of NO and N2O is described. Base metal catalysts were found to deactivate due to the oxidation of the metallic phase, suggesting the use of a noble metal. Platinum catalysts were very active for NO reduction, but they lacked selectivity towards N2, since N2O was produced. The association of Pt and K, a good N2O reduction catalyst, was capable of achieving the complete conversion of both gases at 350 °C, the catalyst being stable over extended periods of time (up to 17 h). A synergistic effect between Pt and K was observed, similar to the effect previously reported for Ni and K.  相似文献   

9.
The NO-H2-O2 reaction was studied over supported bimetallic catalysts, Pt-Mo and Pt-W, which were prepared by coexchange of hydrotalcite-like Mg-Al double layered hydroxides by Pt(NO2)42−, MoO42−, and/or WO42− and subsequent heating at 600 °C in H2. The Pt–Mo interaction could obviously be seen when the catalyst after reduction treatment was exposed to a mixture of NO and H2 in the absence of O2. The Pt-HT catalyst showed the almost complete NO conversion at 70 °C, whereas the Pt-Mo-HT showed a negligible conversion. Upon exposure to O2, however, Pt-Mo-HT exhibited the NO conversion at the lowest temperature of ≥30 °C, compared to ≥60 °C required for Pt-HT. EXAFS/XANES, XPS and IR results suggested that the role of Mo is very sensitive to the oxidation state, i.e., oxidized Mo species residing in Pt particles are postulated to retard the oxidative adsorption of NO as NO3 and promote the catalytic conversion of NO to N2O at low temperatures.  相似文献   

10.
NO removal using CH4 as a reductant in a dual-bed system has been investigated with Co-NaX and Ag-NaX catalysts, which were prepared by Co2+-, Ag+-ion exchange into zeolite NaX, respectively, and activation for 5 h at 500 °C. The experimental result has been compared with that of a Co-NaX-CO catalyst, additionally pre-treated under CO flow for the Co-NaX catalyst. The cobalt crystal structure of a Co-NaX-CO catalyst is Co3O4, which promotes NO oxidation to NO2 by excess O2 at a low temperature (523 K). The mechanical mixture of Co-NaX-CO and Ag-NaX catalysts shows a synergy effect on NO reduction to N2 by CH4 in the presence of excess O2 and H2O, but the NO reduction decreases quickly as time passes. However, the NO reduction to N2 in a deNO bed at 523 K and a deNO2 bed at 423 K, which are relatively lower than the reaction temperatures for common SCR systems, still remained at 67% even in a H2O 10% gas mixture after 160 min.  相似文献   

11.
PtSn/TiO2 catalysts containing 2 wt% Pt and a Pt:Sn atomic ratio of 2:1 and 1:1 were prepared by coimpregnation or successive impregnation method with aqueous solutions of SnCl2·2H2O and H2PtCl6·6H2O of a commercial TiO2 (P25, from Degussa). Both catalyst series, independent of the preparation method, were reduced at 473 and 773 K. XPS results show that tin was in an oxidized state after reduction at 473 K, and that a fraction was in the metallic state after reduction at 773 K. By use of in situ FTIR spectroscopy of adsorbed CO, the presence of bimetallic Pt–Sn phases was assessed after reduction at 773 K. Microcalorimetric analysis of CO adsorption enthalpy indicates that reduction at 773 K causes the appearance of a more heterogeneous distribution of active sites, as well as a loss in the amount of sites. The catalytic activity for the gas phase hydrogenation of crotonaldehyde was greatly improved when the catalysts were prepared by coimpregnation, at both reduction temperatures. The selectivity toward crotyl alcohol was higher after reduction at 773 K and independent of the preparation method, although it increased with the amount of tin, suggesting a promoting effect of tin on this reaction.  相似文献   

12.
In this study, the role of lanthanide elements (Ce, Gd, La, and Yb) on Pd/TiO2 catalysts in the catalytic reduction of NO with methane was investigated. Steady-state reaction experiments in the presence of oxygen showed that the addition of lanthanide elements increases the oxygen resistance of the catalyst. The post-reaction XPS characterization results revealed that majority of the Pd sites remained in the zero oxidation state in the presence of Ce or Gd. The effect of SO2 (145 ppm) and H2O (0–6.6%) in NO–CH4–O2 reaction over supported Pd and Gd–Pd catalysts was also investigated. Over the Gd–Pd catalyst with the presence of SO2, more than 70% NO conversion was obtained for over 6 h while the Pd only catalyst showed a sharper drop in NO conversion. Over the Gd–Pd catalyst, the presence of H2O showed no effect on NO conversion activity (>99% conversion) during the 18 h the catalyst was kept on stream. Among the lanthanide elements tested, Gd is the most effective, allowing the use of above stoichiometric oxygen concentration.  相似文献   

13.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

14.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al2O3 and 1 wt.% Pd/20 wt.% BaO/Al2O3 NOx storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al2O3 catalyst exhibits higher overall NOx reduction activity. Limited amounts of N2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al2O3 and Pd/Al2O3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al2O3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity (i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity (i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C.  相似文献   

15.
The photo-catalytic production of hydrogen from liquid ethanol, a renewable bio-fuel, over Rh/TiO2, Pd/TiO2 and Pt/TiO2, anatase, has been studied. In the absence of the metal, TiO2 shows negligible production of molecular hydrogen. The addition of Pd or Pt dramatically increases the production of hydrogen and a quantum yield of about 10% is reached at 350 K. On the contrary, the Rh doped TiO2 is far less active. The low activity of Rh compared to that of Pd and Pt is not due to poor dispersion or low available Rh sites on the surface, as analyzed by XPS and TEM. For all three catalysts, TEM shows most particles with a size less than 10 nm. XPS results show that while the state of Pd and Pt particles in the as-prepared catalysts was mostly metallic that of the Rh was composed of non-negligible contribution of Rh cations. The extent of reaction of a series of alcohols was also studied, for comparison, on Pt/TiO2. It was found that the reaction is governed by the solvation of the alcohol. In that regard, the production of molecular hydrogen over Pt/TiO2 showed the following trend: methanol ≈ ethanol > propanol ≈ isopropanol > n-butanol.  相似文献   

16.
The activities of Pt supported on various metal-substituted MCM-41 (V-, Ti-, Fe-, Al-, Ga-, La-, Co-, Mo-, Ce-, and Zr-MCM-41) and V-impregnated MCM-41 were investigated for the reduction of NO by C3H6. Among these catalysts, Pt supported on V-impregnated MCM-41 showed the best activity. The maximum conversion of NO into N2+N2O over this Pt/V/MCM-41 catalyst (Pt=1 wt.%, V=3.8 wt.%) was 73%, and this maximum conversion was sustained over a temperature range of 70 °C from 270 to 340 °C. The high activity of Pt/V/MCM-41 over a broad temperature range resulted from two additional reactions besides the reaction occurring on usual supported Pt, the reaction of NO with surface carbonaceous materials, and the reaction of NO occurring on support V-impregnated MCM-41. The former additional reaction showed an oscillation characteristic, a phenomenon in which the concentrations of parts of reactant and product gases oscillate continuously. At low temperature, some water vapor injected into the reactant gas mixture promoted the reaction occurring on usual supported Pt, whereas at high temperature, it suppressed the additional reaction related to carbonaceous materials. Five-hundred parts per million of SO2 added to the reactant gas mixture only slightly decreased the NO conversion of Pt/V/MCM-41.  相似文献   

17.
In this study, we examine the interaction of N2O with TiO2(1 1 0) in an effort to better understand the conversion of NOx species to N2 over TiO2-based catalysts. The TiO2(1 1 0) surface was chosen as a model system because this material is commonly used as a support and because oxygen vacancies on this surface are perhaps the best available models for the role of electronic defects in catalysis. Annealing TiO2(1 1 0) in vacuum at high temperature (above about 800 K) generates oxygen vacancy sites that are associated with reduced surface cations (Ti3+ sites) and that are easily quantified using temperature programmed desorption (TPD) of water. Using TPD, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), we found that the majority of N2O molecules adsorbed at 90 K on TiO2(1 1 0) are weakly held and desorb from the surface at 130 K. However, a small fraction of the N2O molecules exposed to TiO2(1 1 0) at 90 K decompose to N2 via one of two channels, both of which are vacancy-mediated. One channel occurs at 90 K, and results in N2 ejection from the surface and vacancy oxidation. We propose that this channel involves N2O molecules bound at vacancies with the O-end of the molecule in the vacancy. The second channel results from an adsorbed state of N2O that decomposes at 170 K to liberate N2 in the gas phase and deposit oxygen adatoms at non-defect Ti4+ sites. The presence of these O adatoms is clearly evident in subsequent water TPD measurements. We propose that this channel involves N2O molecules that are bound at vacancies with the N-end of the molecule in the vacancy, which permits the O-end of the molecule to interact with an adjacent Ti4+ site. The partitioning between these two channels is roughly 1:1 for adsorption at 90 K, but neither is observed to occur for moderate N2O exposures at temperatures above 200 K. EELS data indicate that vacancies readily transfer charge to N2O at 90 K, and this charge transfer facilitates N2O decomposition. Based on these results, it appears that the decomposition of N2O to N2 requires trapping of the molecule at vacancies and that the lifetime of the N2O–vacancy interaction may be key to the conversion of N2O to N2.  相似文献   

18.
The kinetics of CO oxidation and NO reduction reactions over alumina and alumina-ceria supported Pt, Rh and bimetallic Pt/Rh catalysts coated on metallic monoliths were investigated using the step response technique at atmospheric pressure and at temperatures 30–350°C. The feed step change experiments from an inert flow to a flow of a reagent (O2, CO, NO and H2) showed that the ceria promoted catalysts had higher adsorption capacities, higher reaction rates and promoting effects by preventing the inhibitory effects of reactants, than the alumina supported noble metal catalysts. The effect of ceria was explained with adsorbate spillover from the noble metal sites to ceria. The step change experiments CO/O2 and O2/CO also revealed the enhancing effect of ceria. The step change experiments NO/H2 and H2/NO gave nitrogen as a main reduction product and N2O as a by-product. Preadsorption of NO on the catalyst surface decreased the catalyst activity in the reduction of NO with H2. The CO oxidation transients were modeled with a mechanism which consistent of CO and O2 adsorption and a surface reaction step. The NO reduction experiments with H2 revealed the role of N2O as a surface intermediate in the formation of N2. The formation of NN bonding was assumed to take place prior to, partly prior to or totally following to the NO bond breakage. High NO coverage favors N2O formation. Pt was shown to be more efficient than Rh for NO reduction by H2.  相似文献   

19.
The reduction of NO by CO over Rb-promoted Pt/γ-Al2O3 catalysts has been investigated over a wide range of temperature (ca. 200–500°C), partial pressures of reactants and promoter loadings. For purposes of comparison, K- and Cs-promoted Pt/γ-Al2O3 catalysts were tested under the same conditions. Rubidium strongly enhanced both catalytic activity and N2-selectivity. Rate increases by factors as high as 110 and 45 for the production of N2 and CO2, respectively, relative to unpromoted Pt were obtained, accompanied by substantial increase in N2-selectivity (e.g. from 24 to 82% at 350°C and [CO]=0.5%, [NO]=1%). Under stoichiometric conditions, Rb-promoted catalysts gave 100% conversion of both reactants with 100% selectivity towards N2 at T350°C and at an effective reactant contact time of only 0.5 s. In contrast, under the same conditions unpromoted Pt delivered <30% conversion and poor N2-selectivity (approximately <40%); even at 480°C the conversion was only 60%. The observed promotional effects are ascribed to alkali-induced changes in the chemisorption bond strengths of CO, NO and NO dissociation products which lead to the observed activity enhancement and dependence of N2-selectivity on promoter loading. The effects of K-promotion mirror those of Rb-promotion, but are significantly less pronounced. Rb is the best alkali promoter.  相似文献   

20.
R. Mariscal  S. Rojas  A. G  mez-Cort  s  G. Dí  az  R. P  rez  J. L. G. Fierro 《Catalysis Today》2002,75(1-4):385-391
ZrO2–TiO2 mixed oxides, prepared using the sol–gel method, were used as supports for platinum catalysts. The effects of catalyst pre-reduction and surface acidity on the performance of Pt/ZT catalysts for the reduction of NO with CH4 were studied. The diffuse reflectance infrared Fourier transformed (DRIFT) spectra of CO adsorbed on the Pt/ZT catalysts, and also on the Pt/T and Pt/Z references, pre-reduced at 773 K in hydrogen, revealed that an SMSI state is developed in the Ti-rich oxide-supported platinum catalysts. However, no shift in the binding energy of Pt 4f7/2 level for Pt/T and Pt deposited on Ti-rich support counterparts pre-reduced at 773 K was found by photoelectron spectroscopy. The DRIFT spectra of the catalysts under the NO+O2 co-adsorption revealed the appearance of nitrite/nitrate species on the surface of the Zr-containing catalysts, which displayed acidic properties, but were almost absent in the Pt/T catalyst. The intensity of these bands reached a maximum for the Pt/ZT(1:1) catalyst, which in turn exhibited a larger specific area. In the absence of oxygen in the feed stream, the NO+CH4 reaction showed DRIFT spectra assigned to surface isocyano species. Since the intensity of this band is higher for the Pt/ZT (9:1) catalyst, it seems that such species are developed at the Pt–support interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号