首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the implementation, experimentation, and application of contact control schemes for a 7-DOF Robotics Research arm. The contact forces and torques are measured in the sensor frame by the 6-axis force/torque sensor mounted at the wrist, are compensated for gravity, and then are transformed to the tool frame in which the contact task is defined and executed. The contact control schemes are implemented on the existing robot Cartesian position control system at 400Hz, do not require force rate information, and are extremely simple and computationally fast. Three types of contact control schemes are presented: compliance control, force control, and dual-mode control. In the compliance control scheme, the contact force is fed back through a lag-plus-feedforward compliance controller so that the end-effector behaves like a spring with adjustable stiffness; thus the contact force can be controlled by the reference position command. In the force control scheme, a force setpoint is used as the command input and a proportional-plus-integral force controller is employed to ensure that the contact force tracks the force setpoint accurately. In the dual-mode control scheme, the end-effector approaches and impacts the reaction surface in compliance mode, and the control scheme is then switched automatically to force mode after the initial contact has been established. Experimental results are presented to demonstrate contact with hard and soft surfaces under the three proposed control schemes. The article is concluded with the application of the proposed schemes to perform a contact-based eddy-current inspection task. In this task, the robot first approaches the inspection surface in compliance control until it feels that it has touched the surface, and then automatically levels the end-effector on the surface. The robot control system then transitions to force control and applies the desired force on the surface while executing a scanning motion. At the completion of the inspection task, the robot first relaxes the applied force and then retracts from the surface. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
工业机械臂在诸如打磨抛光等接触式作业任务中对环境刚度信息存在一定的依赖性, 未知环境刚度信息将严重影响机器人的力位控制精度, 使得作业效果难以得到保证. 为解决环境信息不足或未知情况下的力/位置精确控制问题, 本文首先提出了一种新的自适应环境刚度在线估计方法, 针对时变的环境刚度进行实时估计, 由此预测生成后继的机械臂参考轨迹点, 随后提出了一种根据力跟踪误差实时调整末端工具手刚度系数的变刚度导纳恒力控制方法, 并结合李雅普诺夫稳定性理论给出了整体控制律的收敛性证明. 针对刚柔两种末端工具手和多种不同的曲面工件开展了实验研究, 并与传统PID控制方法和传统导纳控制方法进行了对比, 其结果表明本文所提出的复合控制方法可在不同工况条件下实现机器人运动过程中接触力的快速柔顺调节, 并获得4.55%以内的最优力控误差效果, 证明了本文所提出方法的有效性与可行性.  相似文献   

3.
The joint robot control requires to map desired cartesian tasks into desired joint trajectories, by using the ill-posed inverse kinematics mapping. In order to avoid inverse kinematics, the control problem is formulated directly in task space to gives rise to cartesian robot control. In addition, when the robot is constrained due to its kinematic mappings yields a stiff system and an additional complexity arises to implement cartesian control for constrained robots. In this paper, an alternative approach is proposed to guarantee global convergence of force and position cartesian tracking errors under the assumption that the jacobian is not exactly known. A neuro-sliding mode controller is presented, where a small size adaptive neural network compensates approximately for the inverse dynamics and an inner control loop induces second order sliding modes to guarantee tracking. The sliding mode variable tunes the online adaptation of the weights. A passivity analysis yields the energy Lyapunov function to prove boundedness of all closed-loop signals and variable structure control theory is used to finally conclude convergence of position and force tracking errors. Experimental results are provided to visualize the expected performance.  相似文献   

4.
In this work, an approach based on task-priority redundancy resolution and sliding mode ideas is proposed for robot coordination. In particular, equality and inequality constraints representing the coordination of the multi-robot system are considered as mandatory (for instance, rigid-body manipulation constraints to distance between the end-effectors of several robot arms, or other inequality constraints guaranteeing safe operation of a robotic swarm or confining the robot's workspace to avoid collision and joint limits). Besides the mandatory constraints, other constraints with lower priority are considered for the tracking of the workspace reference and to achieve secondary goals. Thus, lower-priority constraints are satisfied only in the null space of the higher-priority ones. The fulfillment of the constraints is achieved using geometric invariance and sliding mode control theory. The validity and effectiveness of the proposed approach are substantiated by 2D and 3D simulation results using two 3R planar robots and two 6R PUMA-762 robots, respectively.  相似文献   

5.
Grasp capability analysis of multifingered robot hands   总被引:2,自引:0,他引:2  
This paper addresses the problem of grasp capability analysis of multifingered robot hands. The aim of the grasp capability analysis is to find the maximum external wrench that the multifingered robot hands can withstand, which is an important criterion in the evaluation of robotic systems. The study of grasp capability provides a basis for the task planning of force control of multifingered robot hands. For a given multifingered hand geometry, the grasp capability depends on the joint driving torque limits, grasp configuration, contact model and so on. A systematic method of the grasp capability analysis, which is in fact a constrained optimization algorithm, is presented. In this optimization, the optimality criterion is the maximum external wrench, and the constraints include the equality constraints and the inequality constraints. The equality constraints are for the grasp to balance the given external wrench, and the inequality constraints are to prevent the slippage of fingertips, the overload of joint actuators, the excessive forces over the physical limits of the object, etc. The advantages of this method are the ability to accomodate diverse areas such as multiple robot arms, intelligent fixtures and so on. The effectiveness of the proposed method is confirmed with a numerical example of a trifingered grasp.  相似文献   

6.
This article considers the question of position and force control of three-link elastic robotic systems on a constraint surface in the presence of robot parameter and environmental constraint geometry uncertainties. The approach of this article is applicable to any multi-link elastic robot. A sliding mode control law is derived for the position and force trajectory control of manipulator. Unlike the rigid robots, sliding mode control of an end point gives rise to unstable zero dynamics. Instability of the zero dynamics is avoided by Controlling a point that lies in the neighborhood of the actual end point position. The sliding mode controller accomplishes tracking of the end-effector and force trajectories on the constrained surface; however, the maneuver of the arm causes elastic mode excitation. For point-to-point control on the constraint surface, a stabilizer is designed for the final capture of the terminal state and vibration suppression. Numerical results are presented to show that in the closed-loop system position and force control is accomplished in spite of payload and constraint surface geometry uncertainty. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
针对输电线路附近的树障进行清理问题,本文提出了一种新型的悬挂伸缩刀具的树障清理空中机器人并进行了仿真和实物验证.首先,对悬挂伸缩刀具的空中机器人进行了伸缩刀具重心变化下的动力学、运动学建模及接触建模.其次,为避免空中机器人接触作业时机器人倾翻的问题,设计了力估计器用于力感知和导纳控制器用于力控制.针对空中机器人非线性强耦合、伸缩刀具时参数摄动及作业时扰动的问题,设计了线性自抗扰控制(LADRC)的机器人位姿控制器.再次,数值仿真验证了导纳控制能有效避免空中机器人接触作业时产生倾翻的问题,以及基于LADRC控制器的位姿控制具有良好的稳定性和抗扰性.最后,通过实物飞行和接触作业测试,进一步验证了本文悬挂伸缩刀具的树障清理空中机器人及其控制方法的有效性.  相似文献   

8.
The success of robot assembly tasks depends heavily on its ability to handle the interactions which take place between the parts being assembled. In this paper, a robust motion-control method is presented for robot manipulators performing assembly tasks in the presence of dynamic constraints from the environment. Using variable structure model reaching control concept, the control objectives is first formulated as a performance model in the task space. A dynamic compensator is then introduced to form the switching function such that the sliding-mode matches the desired model. A simple variable structure control law is suggested to force the system to reach and stay on the sliding mode so that the specified model is achieved.The proposed method is applied to control the prismatic joint of a selective compliance assembly robot-arm type robot for the insertion of printed circuit board into an edge connector socket. Various amounts of interaction forces are generated during the operation. Experimental and simulation results demonstrated the performance of the variable structure model reaching control approach. In comparison, it is shown that the popular position controllers such as proportional plus derivative control and proportional plus derivative with model-based feedforward control are not suitable for achieving good trajectory tracking accuracy in assembly tasks which experience potential interaction force.  相似文献   

9.
This study proposes the design and implementation of a hybrid robust automatic controller based on the application of a high order sliding mode algorithm for a robotic scalpel prototype (RS). Two fully actuated arms with three degrees of freedom constitute the RS, one arm holds the sample and the second one has the scalpel to exert the cutting task. Each arm is attached to its corresponding cartesian robotic platform. The available measurements are the angular displacements, the linear displacement and the force vector describing the interaction between the scalpel and the biological sample. A hybrid position–admittance controller implements an output-based adaptive distributed super-twisting algorithm to mobilize the RS. A high order sliding mode observer estimates the unknown angular and linear velocities that were used in the hybrid controller. Once the end-effector of each arm reaches the desired cutting position, the designed controller switches to the admittance controller to avoid damaging the surrounding tissue. Numerical simulations show the advantages of the suggested controller in comparison with classical algorithms. The hybrid sliding mode admittance controller has been successfully evaluated on an self-constructed platform. The experimental results show a precise cut and efficient mobilization of the RS compared to other classical controllers such as proportional-differentiator, proportional-integral and first order sliding mode controllers.  相似文献   

10.
Abstract: The motion control problem for the finger of a humanoid robot hand is investigated. First, the index finger of the human hand is dynamically modelled as a kinematic chain of cylindrical links. During construction of the model, special attention is given to determining bone dimensions and masses that are similar to the real human hand. After the kinematic and dynamic analysis of the model, in order to ensure that the finger model tracks its desired trajectory during a closing motion, a fuzzy sliding mode controller is applied to the finger model. In this controller, a fuzzy logic algorithm is used in order to tune the control gain of the sliding mode controller; thus, an adaptive controller is obtained. Finally, numerical results, which include a performance comparison of the proposed fuzzy sliding mode controller and a conventional sliding mode controller, are presented. The results demonstrate that the proposed control method can be used to perform the desired motion task for humanoid robot hands efficiently.  相似文献   

11.
Robots acting in human environments usually need to perform multiple motion and force tasks while respecting a set of constraints. When a physical contact with the environment is established, the newly activated force task or contact constraint may interfere with other tasks. The objective of this paper is to provide a control framework that can achieve real-time control of humanoid robots performing both strict and non strict prioritized motion and force tasks. It is a torque-based quasi-static control framework, which handles a dynamically changing task hierarchy with simultaneous priority transitions as well as activation or deactivation of tasks. A quadratic programming problem is solved to maintain desired task hierarchies, subject to constraints. A generalized projector is used to quantitatively regulate how much a task can influence or be influenced by other tasks through the modulation of a priority matrix. By the smooth variations of the priority matrix, sudden hierarchy rearrangements can be avoided to reduce the risk of instability. The effectiveness of this approach is demonstrated on both a simulated and a real humanoid robot.  相似文献   

12.
In this paper, we discuss the problem of implementing impedance control in the presence of model uncertainties and its application to robot force control. We first propose a sliding mode-based impedance controller. The implementation of the targeted impedance, and the preservation of stability in the presence of model uncertainties, are the key issues in the proposed approach. Using sliding mode control, a simple and robust algorithm is obtained so that the targeted impedance can be accurately implemented without the exact model of the robot. The controller is designed in terms of the task space coordinates. The chattering in the sliding mode control is eliminated by using a continuous function. The problem of force control is also addressed for the impedance controlled robot. An off-line estimation method of the environment model is suggested and used in the force control scheme. The proposed impedance and force control schemes have been experimentally verified on a two degree-of-freedom direct-drive robot arm. The experimental results are presented in this paper.  相似文献   

13.
在运动控制领域, 欠驱动机械系统通常需要满足一系列的等式约束(完整或非完整的)以便获得较好的运动 表现, 同时出于安全考虑还需要满足一定的不等式约束条件. 本文提出了一种约束跟随控制方法, 用以解决同时含 等式和不等式约束的欠驱动系统控制问题. 该控制设计主要分为两步: 第1步: 只考虑系统需要满足的等式约束, 运 用约束跟随控制方法推导出基于系统模型的状态反馈控制律; 第2步: 考虑系统需要满足的不等式约束, 先通过状 态变量映射将不等式约束整合到原等式约束中以得到新的等式约束, 再基于新的等式约束和第1步所述的约束跟随 控制方法, 推导出系统所需的状态反馈控制律. 将该约束跟随控制方法应用于三自由度非线性强耦合的欠驱动平面 垂直起降(PVTOL)飞行器. 仿真结果表明, 该控制方法能有效处理PVTOL飞行器运动过程中需满足的等式约束(轨 迹跟踪和姿态保持)和不等式约束(边界服从).  相似文献   

14.
According to a given performance criteria, perfect tracking is defined as the performance of zero tracking error in finite time. It is evident that robotic systems, in particular those that carry out compliant task, can benefit from this performance since perfect tracking of contact forces endows one or many constrained robot manipulators to interact dexterously with the environment. In this article, a dynamical terminal sliding mode controller that guarantees tracking in finite‐time of position and force errors is proposed. The controller renders a dynamic sliding mode for all time and since the equilibrium of the dynamic sliding surface is driven by terminal attractors in the position and force controlled subspaces, robust finite‐time convergence for both tracking errors arises. The controller is continuous; thus chattering is not an issue and the sliding mode condition as well the invariance property are explicitly verified. Surprisingly, the structure of the controller is similar with respect to the infinite‐time tracking case, i.e., the asymptotic stability case, and the advantage becomes more evident because terminal stability properties are obtained with the same Lyapunov function of the asymptotic stability case by using more elaborate error manifolds instead of a more complicated control structure. A simulation study shows the expected perfect tracking and a discussion is presented. © 2001 John Wiley & Sons, Inc.  相似文献   

15.
《Advanced Robotics》2013,27(3):153-168
Many studies have been performed on the position/force control of robot manipulators. Since the desired position and force required to realize certain tasks are usually designated in the operational space, the controller should adapt itself to an environment and generate the control force vector in the operational space. On the other hand, the friction of each joint of a robot manipulator is a serious problem since it impedes control accuracy. Therefore, the friction should be effectively compensated for in order to realize precise control of robot manipulators. Recently, soft computing techniques (fuzzy reasoning, neural networks and genetic algorithms) have been playing an important role in the control of robots. Applying the fuzzy-neuro approach (a combination of fuzzy reasoning and neural networks), learning/adaptation ability and human knowledge can be incorporated into a robot controller. In this paper, we propose a two-stage adaptive robot manipulator position/force control method in which the uncertain/unknown dynamic of the environment is compensated for in the task space and the joint friction is effectively compensated for in the joint space using soft computing techniques. The effectiveness of the proposed control method was evaluated by experiments.  相似文献   

16.
A task space robust trajectory tracking control is developed for robotic manipulators. A second order linear model, which defines the desired impedance for the robot, is used to generate the reference position, velocity and acceleration trajectories under the influence of an external force. The control objective is to make the robotic manipulator’s end effector track the reference trajectories in the task space. A sliding mode based robust control is used to deal with system uncertainties and external perturbations. Thus, a sliding manifold is defined by a linear combination of the tracking errors of the system in the task space built from the difference between the real and the desired position, velocity and acceleration trajectories in comparison with previous works where the sliding manifold was defined by the desired impedance and the external force. Moreover, the ideal relay has been substituted by a relay with a dead-zone in order to fit in with the actual way in which a real computational device implements the typical sign function in sliding mode control. Furthermore, a higher level supervision algorithm is proposed in order to reduce the amplitude of the high frequency components of the output associated to an overestimation of the system uncertainty bounds. Then, the robust control law is applied to the case of a robot with parametric uncertainty and unmodeled dynamics. The closed-loop system is proved to be robustly stable with all signals bounded for all time while the control objective is fulfilled in practice. Finally, a simulation example which shows the usefulness of the proposed scheme is presented.  相似文献   

17.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

18.
吴青聪  王兴松  吴洪涛  陈柏 《机器人》2018,40(4):457-465
为了辅助上肢运动功能障碍患者进行不同模式的康复训练,基于上肢康复外骨骼机器人系统,提出了一种模糊滑模导纳控制策略,实现训练过程的人机协调控制.首先,介绍了康复外骨骼的整体结构和实时控制平台.然后,分析了模糊滑模导纳控制算法的推导过程,并根据李亚普诺夫稳定性判据证明系统的稳定性.最后,在不同系统导纳参数条件下,分别进行被动训练模式和主动训练模式实验,并对比分析了实验过程中运动偏差、人机交互力以及肱二头肌表面肌电信号的变化特点.实验结果表明,选择合适的目标导纳模型可以优化康复训练强度与难度,提高人机交互柔顺性与患者参与度,满足不同瘫痪程度和康复进度患者的训练需求.  相似文献   

19.
During robotic contact tasks, geometric information of the workpiece is used to specify the position of the robot’s hand on the workpiece and the direction of force control. This geometry is idealized in a typical CAD file, but due to manufacturing precision or wear, the actual workpiece geometry is inevitably deviated from the desired geometry. Furthermore, when the workpiece is mounted, position and orientation inaccuracies emerge. In this paper, we investigate two questions: (1) Can the workpiece geometry in the CAD file be used to control a robot in contact with an inaccurately placed workpiece?; and (2) Once the task is performed, how can the robot’s sensor information be used to update the geometry of the workpiece? A methodology is developed to solve robotic control problems with workpiece position and geometry inaccuracies. Once performed, the CAD file image is displaced to fit the sensed trajectory of the robot’s hand. Finally, the workpiece image geometry is modified using a least squares approximation to fit the sensed data more accurately. In the end, the robot performs the contact task while gathering information that is used to update the original CAD file geometry. The methodologies are demonstrated through a simulation experiment that requires a robot to shave a geometrically altered face that is inaccurately positioned.  相似文献   

20.
This paper presents some improvements to the robot kinematic control strategy based on linear programming, as well as its application to a nonholonomic mobile manipulator. In addition to being computationally efficient, this approach enables the inclusion of inequality and equality constraints in the system control inputs and has formal guarantee of stability. We first propose a new positive definite function of the error variation to avoid joint movements when the robot end-effector stabilizes at a point different from the desired one. In addition, the nonholonomic constraint of the mobile base is imposed as an equality constraint, and inequality constraints are defined to avoid both violation of joint limits and collisions between the mobile base and obstacles in the plane. Last, a performance comparison between the linear programming strategy and an approach based on the pseudoinverse of the whole-body Jacobian matrix is presented. Experimental results show that the controller based on linear programming has low computational cost, and the robot is able to control its end-effector without colliding with obstacles in the plane and without violating its joints limits. However, it tends to generate more abrupt control signals than the continuous controller based on the pseudoinverse of the whole-body Jacobian matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号