首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有车型识别算法的耗时长、特征提取复杂、识别率低等问题,本文引入了基于深度学习的卷积神经网络(Convolutional Neural Network CNN)方法。此方法具有鲁棒性好,泛化能力强,识别度高等优点,因而被广泛使用于图像识别领域。在对公路中的4种主要车型(大巴车,面包车,轿车,卡车)的分类实验中,我们运用改进后的卷积神经网络LeNet-5,使车型训练、测试结果均达到了98%以上。另外,本文还研究了改进网络中的Dropout层对车型识别效果的影响。与传统算法相比,经过本文改进后的卷积神经网络LeNet-5,在减少检测时间和提高识别率等方面都有了显著提高,在车型识别上具有明显的优势。  相似文献   

2.
3.
给出了一种基于LeNet-5改进的人脸识别方法,以其能适用于资源及计算能力有限的嵌入式系统.把典型卷积神经网络LeNet-5的结构,设计为由两个卷积采样层、一个全连接隐藏层和一个分类输出层,降低了网络结构复杂度.而且减少了卷积核的个数、改进了池化方式以及分类输出方式,降低了计算复杂度.实验证明,在保证训练和测试精度的同时,该方法提高了在嵌入式平台上进行单人脸识别的速度.  相似文献   

4.
我国的轨道交通线路里程长,途径环境的复杂多样化,由自然灾害、人为因素、随机异物等造成轨道出现障碍物,严重影响行车安全。在客流量大,列车班次间隔时差短的今天,通过人为检测、固定安装监控点的方式随着运营线路的加长成本愈加高昂,因此,通过结合行驶的列车记录的单目实时图像,提出了一种改进的LeNet-5卷积神经网络的轨道交通障碍物检测方法,可实时识别出列车前方铁轨是否存在障碍物,为列车控制系统提供智能预警信息,避免列车与障碍物发生碰撞,保障列车行车的安全性和可靠性。  相似文献   

5.
研究LeNet-5在扫描文档中手写体日期字符识别的应用,由于文档扫描的过程中会引入各种噪声,特别是光照和颜色干扰,直接使用LeNet-5算法不能取得较好效果.先在整份文档中对特定待识别字符的进行定位和划分,并对划分出的字符图像进行去噪、灰度化和二值化处理等预处理,接着将字符图像分割成一个个单个字符,然后在LeNet-5...  相似文献   

6.
针对现有面部表情识别算法耗时长、收敛速度慢、分类精度低等问题,对LeNet-5网络的框架和内部结构进行双重优化和改进,并提出一种基于改进LeNet-5的面部表情识别方法。为了能够提取更加多样化的特征,同时提升特征表达能力,首先增加卷积层和池化层的个数,调整网络内部参数;其次,通过对卷积层、全连接层进行批规范化处理,提高网络模型的泛化能力;最后,3个池化层以maxpool_avgpool_avgpool的组合方式进行重叠池化。在FER2013人脸表情数据库进行实验,结果表明改进后的模型相较于目前的算法具有更高的识别精度。  相似文献   

7.
8.
9.
随着科学技术的进步,人们对情绪这一概念有了全新的认识,从过去认为情绪来源于“心”逐渐发展到了当下普遍认为情绪来源于“脑”。针对脑电信号所具有的诸多特性,首先通过去除心电、肌电噪声,滤波提取脑电信号中的有用波段;再利用集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对脑电信号进行特征提取,利用提取特征通过空间插值法绘制脑电地形图;接着利用LeNet-5算法开展具体情绪识别,并建立模型。最终通过不断地改进模型,显著提高了情绪识别准确率,准确率最高可达80.1%。  相似文献   

10.
林哲聪  张江鑫 《计算机科学》2018,45(Z6):183-186
车牌识别技术是智能交通管理系统的核心,对它的研究与开发具有重要的商业前景。传统的车牌字符识别方法存在特征提取复杂的问题,而卷积神经网络作为一种高效识别算法,对处理二维车牌图像具有独特的优越性。针对传统卷积神经网络LeNet-5识别车牌图像时,存在训练数据较少、全连接层参数冗余以及网络严重过拟合等一系列的问题,设计了一种全局中间值池化(GMP-LeNet)网络,其使用卷积层代替全连接层,利用Network In Network网络中的1*1卷积核进行通道降维,全局均值池化层直接将降维后的特征图馈送到输出层。实验证明,GMP-LeNet网络能有效抑制过拟合现象,并具有较快的识别速度和较高的鲁棒性,车牌识别率达到了98.5%。  相似文献   

11.
针对传统的图像识别算法在压印字符识别领域存在识别精度低、速度较慢的问题,提出了一种基于LeNet-5压印字符识别方法.与传统的LeNet-5不同,在文中网络各卷积层中采用小尺寸卷积核,以提取更多的特征并加快模型的训练速度;使用InceptionV2卷积模块取代C5全连接层,可加深网络宽度,从而提高网络的识别精度;放弃全...  相似文献   

12.
为了快速准确的获取银行卡号信息,文章介绍了一种改进的LeNet-5神经网络结构.首先需要对原始数据预处理,通过数学形态学进行粗定位,最后通过卡行号的位置和特征进行精确定位.在卡号分割阶段,通过转换颜色空间对背景信息进行了去除,再使用了投影分析法对银行卡号分布形态做出了判断,最后使用K均值聚类算法对卡号行图像进行分割.在卡号识别阶段,先对数据进行数据增强,再用其对模型进行训练,将分割后的单独字符图像输入改进后的卷积神经网络LeNet-5对卡号进行识别,识别率达到了99.6%.  相似文献   

13.
陈顺发  刘芬 《测控技术》2024,43(6):33-39
随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过改变模型内部的权重参数来攻击网络,以降低网络性能。为应对此攻击方式,研究了一种基于权重分摊的防御策略。通过计算和分析权重的梯度来确定关键神经元,并为这些神经元添加冗余结构,使错误的权重最终被稀释,以提高模型的容错能力。为了验证这一防御策略,以LeNet-5模型为实验对象进行实验。实验表明,在相同的攻击条件下,经过防御后的模型相较于原始LeNet-5模型,容错精度提升了6.5%,相较于Inception-LeNet-5模型在全连接层上容错精度提升了1.9%。  相似文献   

14.
针对车牌中汉字识别率低和识别速度慢问题,提出一种基于深度学习的车牌识别网络LeNet-5-L,该网络把车牌识别分为两个阶段,运用OpenCV库函数对车牌图像预处理,结合垂直投影分割方法将车牌分割为7个独立字符图像,降低了图像特征提取难度,从而提高车牌中各个的字符识别率和整个车牌识别速度;运用卷积神经网络解决车牌字符识别问题,基于LeNet-L设计一种车牌字符识别网络LeNet-5-L,有效提高车牌中首字符汉字识别率;实验结果表明,该网络对车牌中各个字符的识别准确率均高于99.97%,单个车牌识别时间仅需0.83 ms,该方法有效的提高车牌识别的正确率和识别速度.  相似文献   

15.
章惠  张娜娜  黄俊 《计算机应用》2021,41(6):1667-1672
针对在受到部分遮挡或角度过大无法定位面部关键特征点的情况下,传统的头部姿态估计方法的准确率低或无法进行头部姿态估计的问题,提出了优化LeNet-5网络的多角度头部姿态估计方法.首先,通过对卷积神经网络(CNN)的深度、卷积核大小等进行优化来更好地捕捉图像的全局特征;然后,改进池化层,用卷积操作代替池化操作来增强网络的非...  相似文献   

16.
针对LeNet-5在图像识别上的局限性,提出了一种改进的图像识别卷积神经网络结构,使其能具有更高准确率的同时具有更快的处理速度。首先使用BN方法对输入数据进行批规范化,再对卷积核进行分拆,并构建了更深的网络,去除全连接层,改用平均池化代替。最后进行验证,实现了对LeNet网络的改进。  相似文献   

17.
基于跨连接LeNet-5网络的面部表情识别   总被引:6,自引:0,他引:6  
为避免人为因素对表情特征提取产生的影响,本文选择卷积神经网络进行人脸表情识别的研究.相较于传统的表情识别方法需要进行复杂的人工特征提取,卷积神经网络可以省略人为提取特征的过程.经典的LeNet-5卷积神经网络在手写数字库上取得了很好的识别效果,但在表情识别中识别率不高.本文提出了一种改进的LeNet-5卷积神经网络来进行面部表情识别,将网络结构中提取的低层次特征与高层次特征相结合构造分类器,该方法在JAFFE表情公开库和CK+数据库上取得了较好的结果.  相似文献   

18.
LeNet-5卷积神经网络(CNN)虽然在手写数字识别上取得很好的分类效果,但在具有复杂纹理特征的数据集上分类精度不高。为提高网络在复杂纹理特征图像上分类的正确率,提出一种改进的LeNet-5网络结构。引入跨连思想,充分利用网络提取的低层次特征;把Inception V1模块嵌入LeNet-5卷积神经网络,提取图像的多尺度特征;输出层使用softmax函数对图像进行分类。在Cifar-10和Fashion MNIST数据集上进行的实验结果表明,改进的卷积神经网络在复杂纹理特征数据集上具有很好的分类能力。  相似文献   

19.
针对空对地观测弱小目标识别与跟踪技术需求,提出了一种改进型YOLOv5m网络的多目标识别检测方法,以提升对所占像素个数小于10*10弱小目标的识别能力;分析了网络结构输入端Mosaic数据增强、Anchor计算、Focus模块及SPP模块对弱小目标的影响;在深度学习网络Prediction层引入距离交并比非极大值抑制(DIoU-NMS)代替传统非极大值抑制(NMS),引入距离交并比损失函数(DIoU_Loss)代替广义化交并比损失函数(GIoU_Loss),加快边界框回归速率,提高定位精度,消除重叠检测,并在网络中引入4*4以上像素的目标识别层,提升对遮挡重叠弱小目标识别的准确率;实验结果表明,改进的深度学习网络算法与经典的YOLOv5m网络相比,目标识别的均值平均精度mAP指标达到89.7%,对比原网络提高了4.1%,实现了对图像像素个数小于10*10的弱小目标高精度识别,有效提升了深度学习网络对弱小目标的适应性和应用价值。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号