共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有车型识别算法的耗时长、特征提取复杂、识别率低等问题,本文引入了基于深度学习的卷积神经网络(Convolutional Neural Network CNN)方法。此方法具有鲁棒性好,泛化能力强,识别度高等优点,因而被广泛使用于图像识别领域。在对公路中的4种主要车型(大巴车,面包车,轿车,卡车)的分类实验中,我们运用改进后的卷积神经网络LeNet-5,使车型训练、测试结果均达到了98%以上。另外,本文还研究了改进网络中的Dropout层对车型识别效果的影响。与传统算法相比,经过本文改进后的卷积神经网络LeNet-5,在减少检测时间和提高识别率等方面都有了显著提高,在车型识别上具有明显的优势。 相似文献
2.
3.
给出了一种基于LeNet-5改进的人脸识别方法,以其能适用于资源及计算能力有限的嵌入式系统.把典型卷积神经网络LeNet-5的结构,设计为由两个卷积采样层、一个全连接隐藏层和一个分类输出层,降低了网络结构复杂度.而且减少了卷积核的个数、改进了池化方式以及分类输出方式,降低了计算复杂度.实验证明,在保证训练和测试精度的同时,该方法提高了在嵌入式平台上进行单人脸识别的速度. 相似文献
4.
我国的轨道交通线路里程长,途径环境的复杂多样化,由自然灾害、人为因素、随机异物等造成轨道出现障碍物,严重影响行车安全。在客流量大,列车班次间隔时差短的今天,通过人为检测、固定安装监控点的方式随着运营线路的加长成本愈加高昂,因此,通过结合行驶的列车记录的单目实时图像,提出了一种改进的LeNet-5卷积神经网络的轨道交通障碍物检测方法,可实时识别出列车前方铁轨是否存在障碍物,为列车控制系统提供智能预警信息,避免列车与障碍物发生碰撞,保障列车行车的安全性和可靠性。 相似文献
5.
研究LeNet-5在扫描文档中手写体日期字符识别的应用,由于文档扫描的过程中会引入各种噪声,特别是光照和颜色干扰,直接使用LeNet-5算法不能取得较好效果.先在整份文档中对特定待识别字符的进行定位和划分,并对划分出的字符图像进行去噪、灰度化和二值化处理等预处理,接着将字符图像分割成一个个单个字符,然后在LeNet-5... 相似文献
6.
针对现有面部表情识别算法耗时长、收敛速度慢、分类精度低等问题,对LeNet-5网络的框架和内部结构进行双重优化和改进,并提出一种基于改进LeNet-5的面部表情识别方法。为了能够提取更加多样化的特征,同时提升特征表达能力,首先增加卷积层和池化层的个数,调整网络内部参数;其次,通过对卷积层、全连接层进行批规范化处理,提高网络模型的泛化能力;最后,3个池化层以maxpool_avgpool_avgpool的组合方式进行重叠池化。在FER2013人脸表情数据库进行实验,结果表明改进后的模型相较于目前的算法具有更高的识别精度。 相似文献
7.
8.
9.
随着科学技术的进步,人们对情绪这一概念有了全新的认识,从过去认为情绪来源于“心”逐渐发展到了当下普遍认为情绪来源于“脑”。针对脑电信号所具有的诸多特性,首先通过去除心电、肌电噪声,滤波提取脑电信号中的有用波段;再利用集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对脑电信号进行特征提取,利用提取特征通过空间插值法绘制脑电地形图;接着利用LeNet-5算法开展具体情绪识别,并建立模型。最终通过不断地改进模型,显著提高了情绪识别准确率,准确率最高可达80.1%。 相似文献
10.
车牌识别技术是智能交通管理系统的核心,对它的研究与开发具有重要的商业前景。传统的车牌字符识别方法存在特征提取复杂的问题,而卷积神经网络作为一种高效识别算法,对处理二维车牌图像具有独特的优越性。针对传统卷积神经网络LeNet-5识别车牌图像时,存在训练数据较少、全连接层参数冗余以及网络严重过拟合等一系列的问题,设计了一种全局中间值池化(GMP-LeNet)网络,其使用卷积层代替全连接层,利用Network In Network网络中的1*1卷积核进行通道降维,全局均值池化层直接将降维后的特征图馈送到输出层。实验证明,GMP-LeNet网络能有效抑制过拟合现象,并具有较快的识别速度和较高的鲁棒性,车牌识别率达到了98.5%。 相似文献
11.
12.
为了快速准确的获取银行卡号信息,文章介绍了一种改进的LeNet-5神经网络结构.首先需要对原始数据预处理,通过数学形态学进行粗定位,最后通过卡行号的位置和特征进行精确定位.在卡号分割阶段,通过转换颜色空间对背景信息进行了去除,再使用了投影分析法对银行卡号分布形态做出了判断,最后使用K均值聚类算法对卡号行图像进行分割.在卡号识别阶段,先对数据进行数据增强,再用其对模型进行训练,将分割后的单独字符图像输入改进后的卷积神经网络LeNet-5对卡号进行识别,识别率达到了99.6%. 相似文献
13.
随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过改变模型内部的权重参数来攻击网络,以降低网络性能。为应对此攻击方式,研究了一种基于权重分摊的防御策略。通过计算和分析权重的梯度来确定关键神经元,并为这些神经元添加冗余结构,使错误的权重最终被稀释,以提高模型的容错能力。为了验证这一防御策略,以LeNet-5模型为实验对象进行实验。实验表明,在相同的攻击条件下,经过防御后的模型相较于原始LeNet-5模型,容错精度提升了6.5%,相较于Inception-LeNet-5模型在全连接层上容错精度提升了1.9%。 相似文献
14.
针对车牌中汉字识别率低和识别速度慢问题,提出一种基于深度学习的车牌识别网络LeNet-5-L,该网络把车牌识别分为两个阶段,运用OpenCV库函数对车牌图像预处理,结合垂直投影分割方法将车牌分割为7个独立字符图像,降低了图像特征提取难度,从而提高车牌中各个的字符识别率和整个车牌识别速度;运用卷积神经网络解决车牌字符识别问题,基于LeNet-L设计一种车牌字符识别网络LeNet-5-L,有效提高车牌中首字符汉字识别率;实验结果表明,该网络对车牌中各个字符的识别准确率均高于99.97%,单个车牌识别时间仅需0.83 ms,该方法有效的提高车牌识别的正确率和识别速度. 相似文献
15.
16.
17.
基于跨连接LeNet-5网络的面部表情识别 总被引:6,自引:0,他引:6
为避免人为因素对表情特征提取产生的影响,本文选择卷积神经网络进行人脸表情识别的研究.相较于传统的表情识别方法需要进行复杂的人工特征提取,卷积神经网络可以省略人为提取特征的过程.经典的LeNet-5卷积神经网络在手写数字库上取得了很好的识别效果,但在表情识别中识别率不高.本文提出了一种改进的LeNet-5卷积神经网络来进行面部表情识别,将网络结构中提取的低层次特征与高层次特征相结合构造分类器,该方法在JAFFE表情公开库和CK+数据库上取得了较好的结果. 相似文献
18.
LeNet-5卷积神经网络(CNN)虽然在手写数字识别上取得很好的分类效果,但在具有复杂纹理特征的数据集上分类精度不高。为提高网络在复杂纹理特征图像上分类的正确率,提出一种改进的LeNet-5网络结构。引入跨连思想,充分利用网络提取的低层次特征;把Inception V1模块嵌入LeNet-5卷积神经网络,提取图像的多尺度特征;输出层使用softmax函数对图像进行分类。在Cifar-10和Fashion MNIST数据集上进行的实验结果表明,改进的卷积神经网络在复杂纹理特征数据集上具有很好的分类能力。 相似文献
19.
针对空对地观测弱小目标识别与跟踪技术需求,提出了一种改进型YOLOv5m网络的多目标识别检测方法,以提升对所占像素个数小于10*10弱小目标的识别能力;分析了网络结构输入端Mosaic数据增强、Anchor计算、Focus模块及SPP模块对弱小目标的影响;在深度学习网络Prediction层引入距离交并比非极大值抑制(DIoU-NMS)代替传统非极大值抑制(NMS),引入距离交并比损失函数(DIoU_Loss)代替广义化交并比损失函数(GIoU_Loss),加快边界框回归速率,提高定位精度,消除重叠检测,并在网络中引入4*4以上像素的目标识别层,提升对遮挡重叠弱小目标识别的准确率;实验结果表明,改进的深度学习网络算法与经典的YOLOv5m网络相比,目标识别的均值平均精度mAP指标达到89.7%,对比原网络提高了4.1%,实现了对图像像素个数小于10*10的弱小目标高精度识别,有效提升了深度学习网络对弱小目标的适应性和应用价值。 相似文献
20.