首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inwardly rectifying Kir4.1 channels in astrocytes mediate spatial potassium (K+) buffering, a clearance mechanism for excessive extracellular K+, in tripartite synapses. In addition to K+ homeostasis, astrocytic Kir4.1 channels also play an essential role in regulating extracellular glutamate levels via coupling with glutamate transporters. Moreover, Kir4.1 channels act as novel modulators of the expression of brain-derived neurotrophic factor (BDNF) in astrocytes. Specifically, inhibition of astrocytic Kir4.1 channels elevates extracellular K+ and glutamate levels at synapses and facilitates BDNF expression in astrocytes. These changes elevate neural excitability, which may facilitate synaptic plasticity and connectivity. In this article, we summarize the functions and pharmacological features of Kir4.1 channels in astrocytes and highlight the importance of these channels in the treatment of brain diseases. Although further validation in animal models and human patients is required, astrocytic Kir4.1 channel could potentially serve as a novel therapeutic target for the treatment of depressive disorders and epilepsy.  相似文献   

2.
An association between varicella zoster virus (VZV) and multiple sclerosis (MS) has been reported in Mexican populations. The aim of this study was to compare the response of T cells from MS patients, during relapse and remission, to in vitro stimulation with VZV, adenovirus (AV) and Epstein–Barr virus (EBV). Proliferation and cytokine secretion of T cells from 29 relapsing-remitting MS patients and 38 healthy controls (HC) were analyzed by flow cytometry after stimulating with VZV, AV or EBV. IgG and IgM levels against VZV and EBV were quantified using Enzyme-Linked Immunosorbent Assay. Relapsing MS patients showed a higher percentage of responding CD4+ and CD8+ T cells against VZV compared to AV. In HC and remitting MS patients, proliferation of CD4+ T cells was higher when stimulated with VZV as compared to EBV. Moreover, T cells isolated from remitting patients secreted predominantly Th1 cytokines when cell cultures were stimulated with VZV. Finally, high concentration of anti-VZV IgG was found in sera from patients and controls. The results support previous studies of an VZV-MS association in the particular population studied and provide additional information about the possible role of this virus in the pathogenesis of MS.  相似文献   

3.
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.  相似文献   

4.
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.  相似文献   

5.
Putamen atrophy and its long-term progress during disease course were recently shown in patients with multiple sclerosis (MS). Here we investigated retrospectively the time point of atrophy onset in patients with relapsing-remitting MS (RRMS). 68 patients with RRMS and 26 healthy controls (HC) were admitted to 3T MRI in a cross-sectional study. We quantitatively analyzed the putamen volume of individual patients in relation to disease duration by correcting for age and intracranial volume (ICV). Patient’s relative putamen volume (RPV), expressed in percent of ICV, was significantly reduced compared to HC. Based on the correlation between RPV and age, we computed the age-corrected RPV deviation (ΔRPV) from HC. Patients showed significantly negative ΔRPV. Interestingly, the age-corrected ΔRPV depended logarithmically on disease duration: Directly after first symptom manifestation, patients already showed a reduced RPV followed by a further degressive volumetric decline. This means that atrophy progression was stronger in the first than in later years of disease. Putamen atrophy starts directly after initial symptom manifestation or even years before, and progresses in a degressive manner. Due to its important role in neurological functions, early detection of putamen atrophy seems necessary. High-resolution structural MRI allows monitoring of disease course.  相似文献   

6.
In recent years, several studies have examined the multifaceted role of mitochondria in Multiple Sclerosis (MS), suggesting that, besides inflammation and demyelination, mitochondrial aberration is a crucial factor in mediating axonal degeneration, the latter being responsible for persistent disabilities in MS patients. Therefore, mitochondria have been recognized as a possible multiple sclerosis therapeutic target. Recently, mitochondrial transplantation has become a new term for the transfer of live mitochondria into damaged cells for the treatment of various diseases, including neurodegenerative diseases. In this hypothesis, we propose mitochondrial transplantation as a new, potentially applicable approach to counteract axonal degeneration in multiple sclerosis.  相似文献   

7.
Alemtuzumab is a humanized monoclonal antibody against CD52 (cluster of differentiation 52) and is approved for the therapy of relapsing-remitting multiple sclerosis. The application of alemtuzumab leads to a rapid, but long-lasting depletion predominantly of CD52-bearing B and T cells with reprogramming effects on immune cell composition resulting in the restoration of tolerogenic networks. Alemtuzumab has proven high efficacy in clinical phase II and III trials, where interferon β-1a was used as active comparator. However, alemtuzumab is associated with frequent and considerable risks. Most importantly secondary autoimmune disease affects 30%–40% of patients, predominantly impairing thyroid function. Extensive monitoring and early intervention allow for an appropriate risk management. However, new and reliable biomarkers for individual risk stratification and treatment response to improve patient selection and therapy guidance are a significant unmet need. Only a deeper understanding of the underlying mechanisms of action (MOA) will reveal such markers, maximizing the best potential risk-benefit ratio for the individual patient. This review provides and analyses the current knowledge on the MOA of alemtuzumab. Most recent data on efficacy and safety of alemtuzumab are presented and future research opportunities are discussed.  相似文献   

8.
Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment.  相似文献   

9.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing–remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS–RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.  相似文献   

10.
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.  相似文献   

11.
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.  相似文献   

12.
Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.  相似文献   

13.
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.  相似文献   

14.
The prevalence of multiple sclerosis and the complexity of its etiology and pathogenesis require further study of the factors underlying the progression of this disease. The prominent role of mitochondria in neurons makes this organelle a vulnerable target for CNS diseases. The purpose of this review is to consider the role of mitochondrial dysfunction in the pathogenesis of multiple sclerosis, as well as to propose new promising therapeutic strategies aimed at restoring mitochondrial function in multiple sclerosis.  相似文献   

15.
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh) is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS) patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF) and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND). We observed higher levels of pro-inflammatory cytokines such as IL-1β and IL-17 in both CSF and serum of RR-MS patients compared to control subjects. Moreover, ACh levels were lower in CSF and serum of RR-MS patients compared to levels of control subjects. Although the relationship between high inflammatory cytokine levels and low ACh levels need to be further investigated in the future, our data suggest that IL-1β, and cytokines induced by it, such as IL-17 and ACh, may be involved in the pathogenesis of MS.  相似文献   

16.
The disruption of blood–brain barrier (BBB) for multiple sclerosis (MS) pathogenesis has a double effect: early on during the onset of the immune attack and later for the CNS self-sustained ‘inside-out’ demyelination and neurodegeneration processes. This review presents the characteristics of BBB malfunction in MS but mostly highlights current developments regarding the impairment of the neurovascular unit (NVU) and the metabolic and mitochondrial dysfunctions of the BBB’s endothelial cells. The hypoxic hypothesis is largely studied and agreed upon recently in the pathologic processes in MS. Hypoxia in MS might be produced per se by the NVU malfunction or secondary to mitochondria dysfunction. We present three different but related terms that denominate the ongoing neurodegenerative process in progressive forms of MS that are indirectly related to BBB disruption: progression independent of relapses, no evidence of disease activity and smoldering demyelination or silent progression. Dimethyl fumarate (DMF), modulators of S1P receptor, cladribine and laquinimode are DMTs that are able to cross the BBB and exhibit beneficial direct effects in the CNS with very different mechanisms of action, providing hope that a combined therapy might be effective in treating MS. Detailed mechanisms of action of these DMTs are described and also illustrated in dedicated images. With increasing knowledge about the involvement of BBB in MS pathology, BBB might become a therapeutic target in MS not only to make it impenetrable against activated immune cells but also to allow molecules that have a neuroprotective effect in reaching the cell target inside the CNS.  相似文献   

17.
B cell-depleting therapies such as ocrelizumab (OCR) are highly effective in people with multiple sclerosis (MS). Especially at treatment start and initial infusion, infusion-related reactions (IRR) are a common adverse event. The relevance of acute changes of cell-depleting therapies on peripheral immune compartments and routine lab testing is important for clinical practice. We systematically analyzed routine blood parameters, detailed blood immunophenotyping and serum cytokine profiles in 45 MS patients starting on OCR. Blood samples were collected before and after corticosteroid premedication and directly after each OCR infusion of the first three ocrelizumab infusions. Blood B cells were rapidly depleted and accompanied only by a mild cytokine release at the first OCR infusion. Cytokine release was not significantly detectable from a third application in line with decreasing IRRs. B cell depletion was accompanied by short-lived changes in other immune cell populations in number, activation and cytokine secretion after each OCR infusion. Standard lab parameters did not show any clinically relevant changes. Our data demonstrate only mild changes during the first OCR infusion, which are not present any more during long-term treatment.  相似文献   

18.
19.
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system. At present, there is no definitive cure, and the few available disease-modifying options display either poor efficacy or life-threatening side effects. There is clear evidence that relapsing-remitting clinical attacks in MS are driven by inflammatory demyelination and that the subsequent disease steps, being irresponsive to immunotherapy, result from neurodegeneration. The endocannabinoid system (ECS) stands halfway between three key pathomechanisms underlying MS, namely inflammation, neurodegeneration and oxidative stress, thus representing a kingpin for the identification of novel therapeutic targets in MS. This review summarizes the current state of the art in the field of endocannabinoid metabolism modulators and their in vivo effects on relevant animal models. We also highlight key molecular underpinnings of their therapeutic efficacy as well as the potential to turn them into promising clinical candidates.  相似文献   

20.
Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field. On the basis of our previous research and a review of the literature, we discuss the current understanding of lipid-related mechanisms involved in active relapse, remission, and progression of MS. These insights highlight potential usefulness of lipid markers in prediction or monitoring the course of MS, particularly in its progressive stage, still insufficiently addressed. Furthermore, they raise hope for new, effective, and stage-specific treatment options, involving lipids as targets or carriers of therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号