首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the “brain cholinergic anti-inflammatory pathway”. Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.  相似文献   

2.
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.  相似文献   

3.
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson’s disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.  相似文献   

4.
Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new “dots” are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging.  相似文献   

5.
6.
The annual meeting “Signal Transduction—Receptors, Mediators and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference which is open to all scientists sharing a common interest in the elucidation of the signaling pathways mediating physiological or pathological processes in the health and disease of humans, animals, plants, fungi, prokaryotes, and protists. The 24th meeting on signal transduction was held from 15 to 17 November 2021 in Weimar, Germany. As usual, keynote presentations by invited scientists introduced the respective workshops, and were followed by speakers chosen from the submitted abstracts. A special workshop focused on “Target Identification and Interaction”. Ample time was reserved for the discussion of the presented data during the workshops. Unfortunately, due to restrictions owing to the SARS-CoV-2 pandemic, the poster sessions—and thus intensive scientific discussions at the posters—were not possible. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.  相似文献   

7.
In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called “myokines”, suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the “Niche”. The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines—irisin, directly linked to an active lifestyle—in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.  相似文献   

8.
The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of “complex disorders”. This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).  相似文献   

9.
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.  相似文献   

10.
Iron loading in some brain regions occurs in Parkinson’s Disease (PD), and it has been considered that its removal by iron chelators could be an appropriate therapeutic approach. Since neuroinflammation with microgliosis is also a common feature of PD, it is possible that iron is sequestered within cells as a result of the “anaemia of chronic disease” and remains unavailable to the chelator. In this review, the extent of neuroinflammation in PD is discussed together with the role played by glia cells, specifically microglia and astrocytes, in controlling iron metabolism during inflammation, together with the results of MRI studies. The current use of chelators in clinical medicine is presented together with a discussion of two clinical trials of PD patients where an iron chelator was administered and showed encouraging results. It is proposed that the use of anti-inflammatory drugs combined with an iron chelator might be a better approach to increase chelator efficacy.  相似文献   

11.
Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-β are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-β produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.  相似文献   

12.
The bioactive form of vitamin D, 1,25-dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2-3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive—activated and proliferative—phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased β-galactosidase (B-gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator-activated-receptor-alpha (PPAR-α), reduced most of these effects. Morphological analysis of ex-vivo microglia obtained from vitamin-D-deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D.  相似文献   

13.
Many exogenous and endogenous risk factors have been proposed as precursors of brain tumors, including the exposure to non-ionizing electromagnetic fields. Nevertheless, there is still a debate among the scientific community about the hazard of the effects produced by non-ionizing radiation (NIR) because conflicting results have been found (number of articles reviewed >50). For that reason, to provide new evidence on the possible effects produced by exposure to NIR, we performed different studies with several combinations of extremely low frequencies, times, and field intensities in tumoral and non-tumoral cells. The results of our studies showed that cell viability was frequency dependent in glioblastoma cells. In fact, our results revealed that a frequency of 30 Hz—or even other frequencies close to 30 Hz—could constitute a window frequency determinant of the cellular response in tumoral and non-tumoral cells.  相似文献   

14.
Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.  相似文献   

15.
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.  相似文献   

16.
Zammit VA  Lankester DL 《Lipids》2001,36(6):607-612
The acute effects of addition of oleate on the rate of triacylglycerol (TAG) secretion by cultured rat hepatocytes were studied by monitoring the use of endogenous (14C-prelabeled) acyl moieties and exogenous (3H-labeled) oleate for the synthesis of secreted TAG simultaneously. Inclusion of exogenous oleate in the medium stimulated the secretion of the endogenous 14C-labeled acyl moieties by 55–100%. To find out whether the stimulation was due to increased endogenous TAG mobilization or an increased rate of processing of TAG within the endoplasmic reticulum (ER) secretory machinery, use was made of the inhibition of apolipoprotein B (apoB) synthesis (but not degradation) by Ca2+ mobilization from the ER. Inhibition of apoB synthesis stopped entry of acyl moieties (from endogenous and exogenous sources) into the secretory pathway. However, even when entry of acyl moieties into the secretory pathway was totally inhibited, exogenous oleate was still able to stimulate (twofold) the secretion [14C]TAG, indicating that oleate stimulates the emptying of prelabeled TAG from the secretory compartment at a point distal to apoB synthesis and nascent particle formation. These data indicate that exogenous oleate, besides providing additional acyl moieties for incorporation into secreted TAG, stimulates the secretion of endogenous TAG in a manner (i) that is independent of effects on apoB synthesis and/or degradation and (ii) that involves the enhanced processing of TAG resident within the ER secretory pathway.  相似文献   

17.
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.  相似文献   

18.
Cancer growth represents a dysregulated imbalance between cell gain and cell loss, where the rate of proliferating mutant tumour cells exceeds the rate of those that die. Apoptosis, the most renowned form of programmed cell death, operates as a key physiological mechanism that limits cell population expansion, either to maintain tissue homeostasis or to remove potentially harmful cells, such as those that have sustained DNA damage. Paradoxically, high-grade cancers are generally associated with high constitutive levels of apoptosis. In cancer, cell-autonomous apoptosis constitutes a common tumour suppressor mechanism, a property which is exploited in cancer therapy. By contrast, limited apoptosis in the tumour-cell population also has the potential to promote cell survival and resistance to therapy by conditioning the tumour microenvironment (TME)—including phagocytes and viable tumour cells—and engendering pro-oncogenic effects. Notably, the constitutive apoptosis-mediated activation of cells of the innate immune system can help orchestrate a pro-oncogenic TME and may also effect evasion of cancer treatment. Here, we present an overview of the implications of cell death programmes in tumour biology, with particular focus on apoptosis as a process with “double-edged” consequences: on the one hand, being tumour suppressive through deletion of malignant or pre-malignant cells, while, on the other, being tumour progressive through stimulation of reparatory and regenerative responses in the TME.  相似文献   

19.
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.  相似文献   

20.
The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson’s disease and Alzheimer’s disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号