共查询到8条相似文献,搜索用时 0 毫秒
1.
Mustapha Benkhalifa Fabien Joao Cynthia Duval Debbie Montjean Molka Bouricha Rosalie Cabry Marie-Claire Blanger Hatem Bahri Pierre Miron Moncef Benkhalifa 《International journal of molecular sciences》2022,23(21)
After more than four decades of assisted reproductive technology (ART) practice worldwide, today more than 60% of women undergoing in vitro fertilization (IVF) treatments fail to become pregnant after the first embryo transfer and nearly 20% of patients are suffering from unexplained recurrent implantation failures (RIFs) and repeated pregnancy loss (RPL). The literature reported different causes of RIF–RPL, mainly multifactorial, endometrial and idiopathic. RIF remains a black box because of the complicated categorization and causes of this physio-pathological dysregulation of implantation and pregnancy process after ovarian stimulation. Many options were suggested as solutions to treat RIF–RPL with controversial results on their usefulness. In this article, we reviewed different possible therapeutic options to improve implantation rates and clinical outcomes. Based on our experience we believe that endometrium immunomodulation after intrauterine insemination of activated autologous peripheral blood mononuclear cells (PBMCs) or platelet-rich plasma (PRP) can be a promising therapeutic solution. On the other hand, peripheral lymphocyte balance typing, specific cytokines and interleukins profiling can be proposed as predictive biomarkers of implantation before embryo transfer. 相似文献
2.
Rujira Nonsa-ard Ploypailin Aneknan Terdthai Tong-un Sittisak Honsawek Chanvit Leelayuwat Naruemon Leelayuwat 《International journal of molecular sciences》2022,23(21)
This study investigated the associations between relative telomere length (RTL) and resting metabolic rate (RMR), resting fat oxidation (RFO), and aerobic capacity and whether oxidative stress and inflammation are the underlying mechanisms in sedentary women. We also aimed to determine whether the correlations depend on age and obesity. Sixty-eight normal weight and 66 obese women participated in this study. After adjustment for age, energy expenditure, energy intake, and education level, the RTL of all participants was negatively correlated with absolute RMR (RMRAB) and serum high-sensitivity C-reactive protein (hsCRP) concentration, and positively correlated with maximum oxygen consumption (O2max) (all p < 0.05). After additional adjustment for adiposity indices and fat-free mass (FFM), RTL was positively correlated with plasma vitamin C concentration (p < 0.05). Furthermore, after adjustment for fasting blood glucose concentration, RTL was negatively correlated with age and positively correlated with O2max (mL/kg FFM/min). We found that normal weight women had longer RTL than obese women (p < 0.001). We suggest that RTL is negatively correlated with RMRAB and positively correlated with aerobic capacity, possibly via antioxidant and anti-inflammatory mechanisms. Furthermore, age and obesity influenced the associations. We provide useful information for the management of promotion strategies for health-related physical fitness in women. 相似文献
3.
Cindy Pham Regan Vryer Martin OHely Toby Mansell David Burgner Fiona Collier Christos Symeonides Mimi L. K. Tang Peter Vuillermin Lawrence Gray Richard Saffery Anne-Louise Ponsonby 《International journal of molecular sciences》2022,23(9)
Environmental factors can accelerate telomere length (TL) attrition. Shortened TL is linked to attention deficit/hyperactivity disorder (ADHD) symptoms in school-aged children. The onset of ADHD occurs as early as preschool-age, but the TL-ADHD association in younger children is unknown. We investigated associations between infant TL and ADHD symptoms in children and assessed environmental factors as potential confounders and/or mediators of this association. Relative TL was measured by quantitative polymerase chain reaction in cord and 12-month blood in the birth cohort study, the Barwon Infant Study. Early life environmental factors collected antenatally to two years were used to measure confounding. ADHD symptoms at age two years were evaluated by the Child Behavior Checklist Attention Problems (AP) and the Attention Deficit/Hyperactivity Problems (ADHP). Associations between early life environmental factors on TL or ADHD symptoms were assessed using multivariable regression models adjusted for relevant factors. Telomere length at 12 months (TL12), but not at birth, was inversely associated with AP (β = −0.56; 95% CI (−1.13, 0.006); p = 0.05) and ADHP (β = −0.66; 95% CI (−1.11, −0.21); p = 0.004). Infant secondhand smoke exposure at one month was independently associated with shorter TL12 and also higher ADHD symptoms. Further work is needed to elucidate the mechanisms that influence TL attrition and early neurodevelopment. 相似文献
4.
Alexandra D. George Satvika Burugupalli Sudip Paul Toby Mansell David Burgner Peter J. Meikle 《International journal of molecular sciences》2022,23(14)
Non-communicable diseases continue to increase globally and have their origins early in life. Early life obesity tracks from childhood to adulthood, is associated with obesity, inflammation, and metabolic dysfunction, and predicts non-communicable disease risk in later life. There is mounting evidence that these factors are more prevalent in infants who are formula-fed compared to those who are breastfed. Human milk provides the infant with a complex formulation of lipids, many of which are not present in infant formula, or are present in markedly different concentrations, and the plasma lipidome of breastfed infants differs significantly from that of formula-fed infants. With this knowledge, and the knowledge that lipids have critical implications in human health, the lipid composition of human milk is a promising approach to understanding how breastfeeding protects against obesity, inflammation, and subsequent cardiovascular disease risk. Here we review bioactive human milk lipids and lipid metabolites that may play a protective role against obesity and inflammation in later life. We identify key knowledge gaps and highlight priorities for future research. 相似文献
5.
Chien-Ning Hsu Hong-Ren Yu Julie Y. H. Chan Wei-Chia Lee Kay L. H. Wu Chih-Yao Hou Guo-Ping Chang-Chien Sufan Lin You-Lin Tain 《International journal of molecular sciences》2022,23(14)
Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring’s gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension. 相似文献
6.
The increase in the incidence of cardiovascular diseases (CVDs) and kidney disease has stimulated research for strategies that could prevent, rather than just treat, both interconnected disorders. Resveratrol, a polyphenolic compound with pleiotropic biofunctions, has shown health benefits. Emerging epidemiological data supports that early life environmental insults are regarded as increased risks of developing CVDs and kidney disease in adulthood. Conversely, both disorders could be reversed or postponed by shifting interventions from adulthood to earlier stage by so-called reprogramming. The purpose of this review is first to highlight current epidemiological studies linking cardiovascular and renal programming to resulting CVD and kidney disease of developmental origins. This will be followed by a summary of how resveratrol could exert a positive influence on CVDs and kidney disease. This review also presents an overview of the evidence documenting resveratrol as a reprogramming agent to protect against CVD and kidney disease of developmental origins from animal studies and to outline the advances in understanding the underlying molecular mechanisms. Overall, this review reveals the need for future research to further clarify the reprogramming effects of resveratrol before clinical translation. 相似文献
7.
Polyphenols are the largest group of phytochemicals with health benefits. Early life appears to offer a critical window of opportunity for launching interventions focused on preventing hypertension, as increasing evidence supports the supposition that hypertension can originate in early life. Although polyphenols have antihypertensive actions, knowledge of the potential beneficial action of the early use of polyphenols to avert the development of hypertension is limited. Thus, in this review, we first provide a brief summary of the chemistry and biological function of polyphenols. Then, we present the current epidemiological and experimental evidence supporting the early-life origins of hypertension. We also document animal data on the use of specific polyphenols as an early-life intervention to protect offspring against hypertension in adulthood and discuss underlying mechanisms. Continued research into the use of polyphenols to prevent hypertension from starting early in life will have far-reaching implications for future health. 相似文献
8.
Chien-Ning Hsu Julie Y. H. Chan Kay L. H. Wu Hong-Ren Yu Wei-Chia Lee Chih-Yao Hou You-Lin Tain 《International journal of molecular sciences》2021,22(5)
Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal high-fructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline- and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin–angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure. 相似文献