首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对T92钢在700℃,时间为200、500、800、1000 h的高温时效处理后材料的显微组织和力学性能(包括拉伸性能、冲击性能和硬度)进行研究,同时与供货态T92钢的性能和组织进行比较。试验结果表明,T92钢在700℃时效过程中,强度和硬度值均有所下降,但下降幅度不大;而冲击吸收能量显著下降,和原始试样相比,时效1000 h后,冲击能量下降约26%。显微组织观察结果表明,时效过程中T92钢仍保持马氏体板条形貌,但随着时效时间的延长,马氏体板条宽化,且有亚晶出现。交货态显微组织中的析出相类型主要为M23C6型碳化物,时效过程中,M23C6型碳化物晶界析出并长大,是冲击吸收能量下降的主要因素,MX相在时效过程中数量增加但粗化不明显,时效500 h后Laves相析出,但数量很少,在时效后期有所粗化,数量没有增加。  相似文献   

2.
本文研究了T91钢高温时效过程中组织和力学性能演变规律;并通过高温持久强度试验,探讨不同组织样品的应力-时间关系,揭示显微组织与持久强度之间的关系,并给出剩余寿命分析公式。结果表明,T91钢在高温时效过程中板条马氏体退化为等轴铁素体,位错减少,M23C6、MX型碳化物开始析出长大。M23C6粗化以及板条马氏体结构退化是T91钢持久性能下降的主要因素。  相似文献   

3.
研究了S30432耐热钢在650 ℃时效时的微观组织和力学性能,特别探讨了S30432钢时效过程中析出相的变化对力学性能的影响.结果表明,实验合金时效初期ε-Cu和M23C6大量析出,随后逐渐长大,其中M23C6尺寸较大且粗化较快,但ε-Cu长期时效后尺寸依然细小.时效初期硬度升高的主要原因是ε-Cu的析出,长期时效过程中ε-Cu尺寸保持细小是硬度稳定在较高水平的主要原因.此外,时效初期由于M23C6大量析出冲击韧性急剧下降,随后M23C6的粗化是冲击韧性继续下降的主要原因.  相似文献   

4.
研究了Waspaloy合金在标准热处理状态下,700℃长期时效过程中的组织和力学性能变化。结果表明,长期时效过程中Waspaloy合金析出相主要为MC型碳化物,M23C6型碳化物和γ'相,时效过程中并未发现有害TCP相。M23C6型碳化物在晶界呈链状分布,长期时效过程中其大小、分布基本不变,稳定性良好;γ'相在时效100 h后充分析出,尺寸随时效时间延长而长大,γ'粗化规律符合L-S-W理论,5000 h时效后γ'相形貌仍然为球形。时效100 h合金强度有小幅上升,随后随时效时间延长合金强度变化不大。  相似文献   

5.
通过电解萃取的方法获取了不同服役时间T91钢中的碳化物粒子,利用SEM、XRD、EDS对萃取碳化物的物相、含量、形态及成分进行了分析,讨论了T91钢中碳化物随服役时间的演变规律.研究结果表明,T91钢中碳化物主要有两种:M23C6和MC,其中M23C6占绝大多数.随着服役时间延长,碳化物会发生如下变化:尺寸上,M23C6逐渐沿晶界粗化,MC则相对稳定,运行105296 h后仍未见粗化和增多;形态上,初始的棒状碳化物逐渐开始球化;成分上,Mo、Cr、V由基体逐渐向M23C6中扩散迁移,使得碳化物中Mo、Cr、V增加,Fe含量减少.  相似文献   

6.
研究了Haynes 282耐热合金700 ℃下经100、300、1000、3000 h时效处理后组织和力学性能的变化规律。结果表明:282合金主要析出相为M23C6、MC和γ¢相,700 ℃长期时效后,晶界M23C6型碳化物和晶内MC型碳化物发生长大,γ¢相随时效时间的延长长大缓慢。282合金冲击吸收能量随时效时间的延长逐渐下降,晶界链状分布的M23C6型碳化物是造成其冲击吸收能量下降的原因之一。282合金硬度随时效时间的增加而增加,时效过程中γ¢相的含量及尺寸变化对合金硬度影响较大。  相似文献   

7.
利用Thermal-Calc热力学软件对COST-FB2钢平衡条件下的析出相进行了计算,结合扫描、透射、化学相分析等手段研究了620 ℃不同时效时间下超超临界电站转子用COST-FB2钢的组织、M23C6 碳化物和Laves相的演变,并分析了其变化对性能的影响。结果表明: COST-FB2钢在620 ℃后室温强度和塑性变化不大,高温强度和塑性有波动,冲击性能和硬度在时效前1 000 h下降幅度较大,随着时间的进一步延长有所波动下降的幅度较小。时效 0 ~ 10 000 h 过程中COST-FB2钢中马氏体板条结构比较稳定,位错密度和小角度界面下降,M23C6 碳化物平均粒度增加;Laves相在时效2 000 h开始析出,到时效 10 000 h过程中其尺寸不断增加,10 000 h后平均直径约410 nm,其粗化程度远大于M23C6碳化物;在时效 2 000~6 000 h,Laves相的单位面积数量不断增加,6 000 h以后Laves相的单位面积数量开始下降,时效8 000 h以后趋于平稳。国产COST-FB2钢转子大锻件在620 ℃时效 10 000 h过程中表现出较好的组织和性能稳定性。  相似文献   

8.
国产T91耐热钢650℃蠕变断裂微观机理   总被引:1,自引:0,他引:1  
在650 ℃下对国产T91耐热钢进行了标准拉伸持久试验,采用外推法计算出该钢105 h的持久强度极限为55.42 MPa.使用OM、SEM、TEM和 XRD对不同应力状态下的蠕变断裂试样微观组织进行分析比较.研究结果显示,随着持久断裂时间的延长,T91耐热钢蠕变断裂状态由韧性断裂向脆性断裂模式改变;材料中出现马氏体板条组织分解、M23C6碳化物粗化、位错密度降低和再结晶等现象.析出相强化作用的下降,马氏体板条的碎化和多边形化以及位错机构的退化是国产T91耐热钢蠕变性能下降的主要原因.碳化物的EDS分析表明,不同形貌M23C6碳化物成分存在差异,含Si元素M23C6碳化物更可能在持久过程中长大.  相似文献   

9.
利用金相显微镜、扫描电子显微镜和X射线衍射仪,通过冲击试验,研究了Super304H钢在600℃时效条件下的微观组织和韧性。结果表明,Super304H钢在600℃时效条件下基体组织均是单一奥氏体相,析出相主要由Nb(C,N)、富Cu相和M23C6组成;时效时间不同,析出相的数量、形态和分布不同。其中M23C6沿晶析出是引起时效Super304H钢发生脆化的主要原因,且冲击吸收能量下降幅度与晶界上M23C6数量有关。  相似文献   

10.
对新型奥氏体C-HRA-5耐热钢(22Cr25Ni3Cu4W2Co)进行700℃/0~15 627 h时效试验,采用OM观察时效样品晶粒尺寸和孪晶的变化,采用SEM+EDS、TEM+EDS+SAED分析了时效样中沉淀相析出顺序及粗化特性。结果表明,试验钢在700℃/15627h时效过程中先后析出M23C6、Z相、富Cu相和Laves相等第二相,其中M23C6相主要在晶界析出,其它第二相主要分布在晶内,未发现σ相的析出。在时效过程中,富Cu相和Z相尺寸比较细小稳定,尤其是富Cu相,时效至15 627 h时直径约10 nm,它们是提高C-HRA-5钢热强性的主要强化相。晶界M23C6碳化物粗化速率较快,时效817 h时已在晶界形成断续状分布,时效至15 627 h时,其在晶界宽度增长至550 nm;而晶内M23C6碳化物粗化相对缓慢。由于添加W元素,在时效后期有大量针状Laves相在晶内析出,主要沿长度方向长大;另有少量颗粒状Laves相在晶界M23C6内部或其附近析出,尺寸较稳定。在长期时效过程中,未发现σ相的析出,这与C-HRA-5钢增加Ni和添加Co元素可以抑制或延迟其析出有关。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号