首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以氯化钙、硬脂酸、硫代硫酸钠、尿素作为造孔剂,利用占位法进行孔径为1~2 mm,孔隙率为60%、70%、80%球形孔泡沫铝的制备。对其孔结构(孔面积、孔圆形度)、压缩性能和吸能效果进行对比分析。结果表明:氯化钙-泡沫铝因其具备较好的孔结构,所表现出的压缩性能和吸能效果也更优异。  相似文献   

2.
用可溶石膏型预制块制备低密度开孔泡沫铝   总被引:4,自引:1,他引:3  
研究了用可溶石膏型预制块制备低密度开孔泡沫铝的工艺及其压缩性能。采用聚氨酯网状海绵为母体材料制备可溶石膏型预制块,并分析了MgSO4和铝矾土的加入量对石膏型预制块可溶性和抗压强度的影响。采用预制块加压渗流的方法制备低密度开孔泡沫铝,研究了渗流工艺参数的控制方法,并对制备的泡沫铝进行了压缩试验,研究了其压缩力学行为,结果表明,所制备的低密度开孔泡沫铝压缩过程表现出3个明显的阶段,即弹性段、塑性坍塌段和密实段,而且应力-应变曲线在塑性坍塌段表现出明显的波动特征。  相似文献   

3.
泡孔结构对开孔泡沫铝压缩力学性能的影响   总被引:1,自引:0,他引:1  
采用渗流工艺制备出不同孔径的均匀孔结构和混合孔结构的开孔泡沫铝,研究了孔结构(孔径大小及其比例分布)对开孔泡沫铝压缩力学性能的影响。结果表明:对于均匀孔径的开孔泡沫铝而言,在相对密度不变的条件下,孔径大小对其压缩性能几乎没有影响;而当泡沫铝的孔结构是由不同尺寸的孔相混合时,则大孔与小孔的相对体积比对其力学性能,特别是弹性模量具有较大影响,大、小孔径按适当比例混合可使开孔泡沫铝相对密度降低而刚度显著升高。  相似文献   

4.
采用有限元模拟了不同孔径比和体积比的二元孔径结构对开孔泡沫铝力学性能的影响,并取得了相应参数.用渗流法制备出相应孔参数的泡沫铝,并对其进行压缩试验加以验证.模拟和实验结果均表明,当泡沫铝的孔结构由大、小孔按一定的尺寸比和体积比组成时,泡沫铝的强度和刚度显著提高,孔径尺寸比和体积比分别为0.40~0.45和0.07~0.12是最优的.  相似文献   

5.
采用反重力渗流铸造法成功制备了开孔泡沫铝材料,对比研究反重力渗流铸造和传统真空渗流法制备的开孔泡沫铝的声学性能。结果表明:两种方法所制备的泡沫铝在高频段的吸声系数均高于低频段的,且在低频段的吸声系数差别不大;在高频段,反重力渗流铸造所得材料的吸声系数明显优于传统真空渗流法所制备材料的,原因是反重力渗流法使泡沫铝中相邻孔洞的连通空间减小;在反重力渗流铸造制备的开孔泡沫铝材料中,造孔粒子粒径与平均吸声系数成反比,孔隙率与平均吸声系数成正比,增大泡沫铝的厚度有利于提高其吸声性能。  相似文献   

6.
介绍了以NaCl粒子为造孔剂利用冷压-溶解-真空烧结法制备泡沫铝的新工艺。研究了该方法制备泡沫铝的关键工艺过程,分析讨论了试验工艺条件和工艺参数对泡沫铝形成及质量的影响。结果表明,该方法工艺简单,可制备出孔分布较均匀,且孔结构及孔隙率易于控制的通孔泡沫铝。压制压力250MPa、烧结温度540℃保温2h为最佳的制备工艺参数。  相似文献   

7.
本文采用加压渗流方法制备开孔结构的泡沫铝,并通过调整工艺参数改变泡沫铝的孔径和相对密度.采用“直流四端电极”法测量了不同参数泡沫铝的电阻,研究开孔泡沫铝的导电性随其相对密度和孔径的变化规律.实验结果表明:随着相对密度的提高,开孔泡沫铝的电导率增大,且电导率随相对密度的改变呈指数关系变化;当相对密度参数基本相同时,随着泡沫铝孔径的减小,由于在制备过程中产生的结构缺陷增多,其电导性下降.  相似文献   

8.
泡沫铝的制备及其力学行为的研究   总被引:1,自引:0,他引:1  
简要介绍泡沫金属的性能特点、制备方法及其应用.采用加压渗流法制备具有开孔结构的泡沫铝,并对此分别进行准静态和动态压缩实验,研究其静态和动态压缩应变力-应变响应特征、应变率效应和吸能特性.实践证明这种泡沫铝具有很明显的应变率效应.  相似文献   

9.
以PVB为造孔剂采用硅树脂制备泡沫陶瓷   总被引:2,自引:0,他引:2  
采用硅树脂为先驱体,利用先驱体转化法与添加造孔剂法相结合制备SiOC泡沫陶瓷.通过对造孔剂聚乙烯醇缩丁醛(PVB)和硅树脂的热分析制定温度曲线,研究了裂解温度、造孔剂含量对泡沫陶瓷抗压强度及孔隙率的影响,采用XRD、SEM及EDS对SiOC泡沫陶瓷进行了物相、微观结构和成分分析.结果表明,在1000~1400 ℃温度范围内,随着温度的升高,泡沫陶瓷的抗压强度先升高后降低,而孔隙率逐渐降低;造孔剂含量对泡沫陶瓷的性能也有明显的影响,随着造孔剂含量的增加,试样的抗压强度逐渐减小,而孔隙率逐渐增大.当裂解温度为1250 ℃,PVB的含量为50%(质量分数,下同)时,所制得的泡沫陶瓷的抗压强度为52.3 MPa,孔隙率为72%.XRD研究表明,随着温度的逐步升高,硅树脂的裂解产物发生了由非晶态向晶态的转变.微观结构分析显示,SiOC泡沫陶瓷呈三维网状结构,微孔分布较均匀.  相似文献   

10.
石膏型渗流制备泡沫铝填充圆管压缩行为研究   总被引:1,自引:0,他引:1  
采用石膏型渗流制备开孔泡沫铝并填充到薄壁圆管,制成泡沫铝夹心管。通过准静态压缩试验研究了泡沫铝夹心管的压缩行为。结果表明:采用石膏型渗流法制备的泡沫铝孔隙率在85%左右,其压缩变形阶段可分为弹性段、塑性平台段和致密化段;空心圆管的压缩行为与其本身的结构参数有关;泡沫铝夹心管的力学性能与吸能能力比空心圆管和泡沫铝有了一定的提高,且石膏型渗流法所制泡沫铝夹心管质量较轻。  相似文献   

11.
选用Al2O3、Y2O3作为烧结助剂,通过有机模板复制法及多次浸渍涂覆工艺制备出高强度碳化硅泡沫陶瓷材料。系统地研究了原料组成、烧结温度等工艺参数对制得的碳化硅泡沫陶瓷物相组成、宏观结构、微观结构的影响,同时对陶瓷的气孔率、力学性能等进行了测试。结果表明:通过选取不同PPI值的有机泡沫模板,泡沫陶瓷宏观孔径可控;随着涂覆次数的增加,陶瓷体孔径减小、孔棱直径增加;随着烧结温度的提高,孔棱致密度增加,抗压强度显著提高;在1700℃下获得了20PPI值,气孔率为77%,抗压强度达2.48MPa的碳化硅泡沫陶瓷。  相似文献   

12.
使用圆盘造粒机制备近球形的NaCl颗粒,并将其用于渗透铸造制备开孔泡沫铝。盐球的平均抗压缩强度为3.9 MPa,在超声波清洗机中可在5 min内完全塌陷。通过控制热压烧结时间为0.5~2 h,热压温度700℃,可制备堆积密度在0.66~0.83 g/cm3的预制体。延长热压烧结时间会使开孔泡沫铝的孔径从0.48 mm增加到1.16 mm,孔隙率从64%增加到82%。压缩实验结果表明,不同孔隙结构下泡沫体的宏观变形特征基本相同,均表现出逐层塌陷的变形特征。此外,泡沫铝的致密化应变值、弹性模量、平台屈服应力和能量吸收能力均随着孔隙率的增加而降低。当孔隙率为64%时,能量吸收能力最大(15.0 MJ·m-3)。  相似文献   

13.
从生物学角度出发设计并制备2种不同孔径分布的多孔钛,并研究其力学性能。采用造孔剂烧结方法制备孔隙率为36%~63%的多孔钛,通过室温压缩测试其力学性能。多孔钛的弹性模量和抗压强度分别在2.662~18 GPa和94.05~468.57 MPa范围内,且都随着孔隙率的增加而降低。抗压强度和孔隙率的关系曲线呈现完全的线性特征,表明抗压强度主要受孔隙率的影响,几乎不受孔径的影响。Gibson-Ashby力学关系分析结果显示:常数项C值的差异说明孔径分布对多孔钛的屈服强度有一定的影响;密度指数n值均大于临界值3,表明这2种不同孔径的多孔钛的变形方式相同,为孔壁的屈曲作用。  相似文献   

14.
《Acta Materialia》2008,56(18):5147-5157
Thermoreversible gelcasting, a near-net-shape processing technique, is demonstrated here for titanium. The gelcasting system is composed of TiH2 particles suspended in a triblock copolymer gel that behaves as a viscous liquid above 56 °C and an elastic solid at room temperature, a temperature-dependent transition that is fully reversible when solvent is present. Organic pyrolysis to remove the gel followed by vacuum sintering to densify the Ti powders (produced by decomposition of the hydride) results in titanium with near full density and low contamination. Incorporation of polypropylene and poly(methyl methacrylate) space-holder particles into the gel results in titanium with controlled porosities up to 44 vol.% and with low contamination. These foams exhibit tailorable stiffness and strength, together with excellent compressive ductility and energy absorption.  相似文献   

15.
Aluminum foams are focused on as a lightweight structural material because of their excellent energy absorbing capacity. However, compressive strength of aluminum foams is much lower than that of dense aluminum. This is due to local buckling of the inhomogeneous cell structure. The authors carried out infiltration of open surface pores with polyester resin because buckling starts at the open surface pores. Compressive tests using commercial aluminum foams show significant increases in compressive strength and absorbed energy. Since the density of resin is not high, the specific compressive strength and specific absorbed energy are also increased.  相似文献   

16.
The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper.The experimental results indicate that the defo...  相似文献   

17.
Effects of cell size on compressive properties of aluminum foam   总被引:3,自引:0,他引:3  
1 Introduction Metal foams are a relatively new class of structural materials and offer a variety of applications in fields such as lightmass construction or crash energy management. In view of potential applications, the mechanical properties of foamed m…  相似文献   

18.
泡沫铝合金显微组织和压缩力学性能的研究   总被引:3,自引:1,他引:3  
采用Si、Mg及Cu元素进行合金化处理,制备了几种不同力学性能的开孔泡沫铝,并通过准静态压缩实验,研究合金化对泡沫铝压缩力学行为与吸能特征的影响。实验结果表明:采用Si、Mg及Cu元素合金化处理显著改变了泡沫铝的应力-应变行为与吸能特征,使泡沫铝的屈服强度提高,吸能性大幅度上升。另外,还研究了渗流法制备工艺对泡沫铝微观组织和性能的影响,结果显示由于渗流法制备过程特殊的凝固条件,使得泡沫铝的微观组织比相同成分的铸造铝合金的组织明显粗大。  相似文献   

19.
利用占位体烧结法在不同的占位体粒径、体积分数以及不同的烧结温度、时间条件下制备出泡沫钛。采用光学金相、扫描电镜等对泡沫钛的孔隙结构进行分析;通过室温压缩实验对泡沫钛的力学性能进行评价。结果表明,泡沫钛孔隙横截面呈圆形,纵截面呈椭圆形,其孔隙率与占位体体积分数的差值随占位体粒径、体积分数的增加、烧结温度的升高、时间的延长呈升高的变化趋势。同时,烧结温度越高,所制备的泡沫钛孔壁越致密。与传统的泡沫材料不同,泡沫钛应力-应变关系曲线并没有出现明显的应力平台,抗压缩强度和弹性模量随孔隙率的增加呈下降的变化趋势,当孔隙率为67.6%时,抗压缩强度和弹性模量分别达到14.4 MPa和1.17 GPa。抗压缩强度随孔径的增大呈先升高再降低的变化趋势,而弹性模量随孔径的增加基本不变,当孔径达到1.15~1.53 mm时,其抗压缩强度和弹性模量分别达到48.9 MPa和1.72 GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号