首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

2.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

3.
Amine is one of candidate solvents that can be used for CO2 recovery from the flue gas by conventional chemical absorption/desorption process. In this work, we analyzed the impact of different amine absorbents and their concentrations, the absorber and stripper column heights and the operating conditions on the cost of CO2 recovery plant for post-combustion CO2 removal. For each amine solvent, the optimum number of stages for the absorber and stripper columns, and the optimum absorbent concentration, i.e., the ones that give the minimum cost for CO2 removed, is determined by response surface optimization. Our results suggest that CO2 recovery with 48 wt% DGA requires the lowest CO2 removal cost of $43.06/ton of CO2 with the following design and operating conditions: a 20-stage absorber column and a 7-stage stripper column, 26 m3/h of solvent circulation rate, 1903 kW of reboiler duty, and 99°C as the regenerator-inlet temperature.  相似文献   

4.
Porous polyethersulfone hollow fiber membranes were fabricated via dry–wet phase inversion method with the polymer concentration in the spinning dope either 13 wt% or 15 wt%. The fabricated hollow fiber membranes were characterized by different test methods and the performance of membranes in contactor applications was tested by CO2 absorption. The mean pore size, effective surface porosity and membrane porosity decreased while the membrane density and Liquid Entry Pressure (LEPw) increased as polymer concentration increased. The CO2 absorption flux of the fabricated membranes was measured in two cases; i.e. when the absorbent, distilled water, was in the lumen side or in the shell side. The CO2 flux for the membrane, fabricated from 13 wt% PES solution, was compared with some commercial and in-house made membranes. The former membrane had 111% higher flux than a commercial PTFE membrane.  相似文献   

5.
Porous polyvinylidene fluoride (PVDF) and polyetherimide (PEI) hollow fiber membranes incorporating polyethylene glycol (PEG) were prepared via spinning process for CO2 membrane stripping. CO2 loaded diethanolamine solution was used as liquid absorbent while N2 was used as a strip gas. The characterization study of the fibers was carried out in terms of permeation test, contact angle measurement and liquid entry pressure (wetting pressure). Performance study via membrane contactor stripping was carried out at specific operating condition. The experimental results showed that PVDF membrane have high gas permeation, effective surface porosity and contact angle despite having lower liquid entry pressure in comparison with PEI membrane. PVDF-PEG membrane showed the highest stripping flux of 4.0 × 10−2 mol m−2 s−1 at 0.7 ms−1 compared to that of PEI membrane. Although the stripping flux for PEI-PEG membranes was slightly lower than PVDF membrane (e.g. 3.5 × 10−2 mol m−2 s−1 at liquid velocity of 0.85 ms−1), the membrane wetting pressure of PEI membrane is higher than hydrophobic PVDF membrane. Long term performance of both membranes showed severe flux reduction but started to level-off after 30 h of operation.  相似文献   

6.
In this study, the absorption of carbon dioxide by the absorbent which was composed of 2-amino-2-methyl-l-propanol (AMP) + piperazine (PZ) or methyldiethanolamine (MDEA) + piperazine (PZ) in polyvinylidinefluoride (PVDF) and polypropylene (PP) membrane contactors werewas examined. Three resistances were considered in each hollow fiber, i.e., liquid-film diffusion, membrane diffusion, and gas-film diffusion. The mass transfer resistance of membrane km was influenced by the wetting ratio using an absorbent with higher reaction rate. The wetting ratio was affected by contact angle between the membrane and absorbent and the viscosity of absorbent. The calculated absorption rates considering wetting ratio of membrane and using the modified correlation equation of gas-phase mass transfer coefficient were reasonably agreeable to those of measured ones (standard deviation, 4%). The fractional resistance of each transport step during the experiments was then determined. The rate-controlling step was dominated by the resistance of gas-film diffusion with mixed absorbents. The absorption rates of CO2 increase with the increasing of gas flow rates in the most experimental cases. The resistance of liquid-film diffusion was only important using an absorbent with lower reaction rate. The rate-controlling step was the membrane diffusion only at higher gas flow rate with the absorbent composed of AMP and PZ in PVDF hollow fiber membrane contactor.  相似文献   

7.
A method of supplying CO2 to photosynthetic algal cultures was developed based on mass transfer measurements of CO2 through microporous hydrophobic hollow fibres for various gas and liquid flow rates. A mathematical model was derived to describe the mass transfer. The designed hollow fibre module led to overall mass transfer coefficient values ranging from 1·26 × 10−3 to 2·64 × 10−3 cm s−1. Higher efficiencies of the CO2 transmission were obtained at high liquid flow rates and low gas flow rates. The use of microporous hydrophobic hollow fibres enabled an enhancement of the carbon dioxide transfer per area of membrane surface by a factor of 10, in comparison to operation with silicone tubing. The hollow fibre module was operated in an external bypass to a 1 dm3 microalgae culture vessel. In this system the algal growth pattern was similar to that obtained with a control culture where CO2 was bubbled. However, the dissolved oxygen concentration was always lower in the vessel in which CO2 was supplied by the module. © 1998 SCI.  相似文献   

8.
In this study, capture of CO2 and H2S from natural gas mixture using porous polymeric membranes has been investigated numerically to assess the capacity of a novel absorbent, di‐isopropanol amine (DIPA), in CO2 removal. Diffusion of acid gases through porous polymeric membranes was simulated by employing CFD techniques and considering a gas feed stream, a porous membrane and a reaction medium. For solving conservation equations, finite element method was applied to calculate the rate of CO2 and H2S absorption in the membrane. The type of membrane in this work is a hollow‐fiber module. According to the modeling results, a high H2S removal can be achieved by DIPA absorber. Moreover, CO2 was captured from natural gas in an efficient manner in low gas/liquid flow rates. POLYM. ENG. SCI., 55:598–603, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
《分离科学与技术》2012,47(16):2320-2330
In this research, continuous SAPO-34 membranes were synthesized via secondary growth method onto both α-Al2O3 and mullite supports at three levels of synthesis temperature: 185, 195, and 220°C for 24 h. The synthesized membranes were characterized using XRD and SEM analysis and single gas permeation experiments. It was found out that support material and synthesis temperature both have significant effects on the membrane performance. At higher synthesis temperature, SAPO-34 crystals grown over the mullite support become more uniform and smaller in size but those grown on the α-Al2O3 support become larger. Effect of synthesis temperature on single gas permeation properties of the synthesized SAPO-34 membranes was also studied. For the mullite supported membranes, the CH4 and CO2 permeances decrease as synthesis temperature increases; but in the case of the alumina supported membranes, by increasing synthesis temperature, CH4 and CO2 permeances first decrease up to 195°C and then increase up to 220°C. Even in equal membrane thicknesses, the mullite supported membrane shows lower gas permenaces. Increasing synthesis temperature decreases CO2/CH4 ideal selectivity for the α-Al2O3 supported membranes, while increases for the mullite supported membranes. Under optimum synthesis conditions, at room temperature and 2 bar feed pressure, the CO2 permeance through the α-Al2O3 and the mullite supported SAPO-34 membranes are 8.2 × 10?7 and 8.5 × 10?8 (mol/m2 · s · Pa), respectively, and CO2/CH4 ideal selectivities are 51 and 61, respectively.  相似文献   

10.
The internal structure design of membrane module is very important for gas removal performance using membrane contactor via physical absorption. In this study, a novel membrane contactor developed by weaving polytetrafluoroethylene (PTFE) hollow fibers was applied to remove CO2 from 60% N2 + 40% CO2 mixture (with CO2 concentration similar to that of biogas) at elevated pressure (0.8 MPa) using water as absorbent. Compared with the conventional module with randomly packed straight fibers, the module with woven PTFE fibers exhibited much better CO2 absorption performance. The weaving configuration facilitated the meandering flow or Dean vortices and renewing speed of water around hollow fibers. Meanwhile, the undesired influences such as channeling and bypassing were also eliminated. Consequently, the mass transfer of liquid phase was greatly improved and the CO2 removal efficiency was significantly enhanced. The effects of operation pressure, module arrangement, feed gas, and water flow rate on CO2 removal were systematically investigated as well. The overall mass‐transfer coefficient (KOV) varied from 1.96 × 10?5 to 4.39 × 10?5 m/s (the volumetric mass‐transfer coefficient KLa = 0.034–0.075 s?1) under the experimental conditions. The CO2 removal performance of novel woven fiber membrane contactor matched well with the simulation results. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2135–2145, 2018  相似文献   

11.
The wetting resistance of poly(vinylidene fluoride) (PVDF) membrane is a critical factor which determines the carbon dioxide (CO2) absorption performance of the gas–liquid membrane contactors. In this study, the composite PVDF–polytetrafluoroethylene (PTFE) hollow fiber membranes were fabricated through dry-jet wet phase-inversion method by dispersing PTFE nanoparticles into PVDF solution and adopting phosphoric acid as nonsolvent additive. Compared with the PVDF membrane, the composite membranes presented higher CO2 absorption flux due to their higher effective surface porosity and surface hydrophobicity. The composite membrane with addition of 5 wt % PTFE in the dope gained the optimum CO2 absorption flux of 9.84 × 10−4 and 2.02 × 10−3 mol m−2 s−1 at an inlet gas (CO2/N2 = 19/81, v/v) flow rate of 100 mL min−1 by using distilled water and aqueous diethanolamine solution, respectively. Moreover, the 5% PTFE membrane showed better long-term stability than the PVDF membrane regardless of different types of absorbent, indicating that polymer blending demonstrates great potential for gas separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47767.  相似文献   

12.
With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted of polyethersulfone (PES), Nmethyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547 L/m2·h and 1.4 μm, respectively. Under 1600dgC of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its’asymmetric structure even after the sintering process.  相似文献   

13.
The performance of non-porous silicone rubber and microporous hydrophobic polypropylene hollow fibre membranes coupled with liquid absorbent were assessed for the removal of SO2; from a gas stream. This approach combines the advantages of absorption technology (high selectivity) with membrane systems (compactness of equipment). The advantages of such gas absorption membranes were evident in the increased selectivities of both membranes. A mathematical model which incorporates the effective permeabilities of the gases has been developed to simulate the separation process. Numerical simulations agreed well with the experiment. Further investigations were carried out to study the combined removal of CO2 and SO2 and any possible interactive effects of these gases during absorption in these contactors.  相似文献   

14.
The separation of CO2/CH4 is reported in detail by using zeolitic imidazolate framework (ZIF-8) membrane which was prepared on 3-aminopropyltriethoxysilane modified Al2O3 tube through microwave heating synthesis. Attributed to the preferential adsorption affinity of CO2 over CH4 and a narrow pore window of 0.34 nm, the ZIF-8 membrane shows high separation performances for the separation of CO2/CH4 mixtures. For the separation of equimolar CO2/CH4 mixture at 100°C and 2 bar feed (1 bar permeate) pressure, a CO2 permeance of 1.02 × 10?8 mol/m2· s· Pa and a CO2/CH4 selectivity of 6.8 are obtained, which is promising for CO2 separation.  相似文献   

15.
In order to develop the structure of microporous PVDF membranes, PEG-400 was introduced into the polymer dope as a non-solvent additive. The hollow fiber membranes were prepared via a wet phase-inversion process and then used in the membrane contactor modules for CO2 stripping from water. By addition of different amounts of PEG-400, cloud points of the polymer dope were obtained to examine phase-inversion behavior. From FESEM analysis, the membrane structure changed from a finger-like to an approximately sponge-like morphology with the addition of 4 wt.% of PEG-400. The prepared membranes presented smaller mean pore size (0.13 μm) and significantly higher wetting pressure (550 kPa) compared to the plain membrane. From CO2 stripping test, at water velocity of 0.4 m/s, the PVDF membranes prepared by 4% PEG-400 demonstrated an approximate CO2 stripping flux of 4.5 × 10−5 (mol/m2 s) which is 125% higher than the flux of the plain membrane. It could be concluded that structurally developed hydrophobic PVDF hollow fiber membranes can be prepared by a controlled phase-inversion process to enhance the performance of gas–liquid membrane contactor.  相似文献   

16.
《分离科学与技术》2012,47(15):2445-2466
Abstract

In this paper an extended analysis on a hollow-fiber membrane absorber is conducted for CO2 removal from flue gases. A rigorous model of gas–liquid mass transfer is developed on both narrow channels in and around the hollow fibers, including the gas absorption occurring from the reaction between CO2 and aqueous K2CO3 absorbent. CO2 concentration profiles can be obtained regardless of the placement of the flowing absorbent. Experimental observations of the CO2 concentration in both the reject and permeate outlets compared with theoretical prediction allow us to understand the influence of flow rates of feed gas as well as absorbent on CO2 absorption. For the flowing K2CO3 absorbent a kinetic constant can be chosen which will provide the best possible agreement between experiment and reactive model prediction. This fact emphasizes that the pseudofirst-order kinetic can be employed to describe the facilitation effect. The overall mass transfer coefficients were determined from the experimentally observed concentration changes. The CO2 permeation flux was found to be enhanced as the K2CO3 concentration was increased, suggesting that CO2 removal is entirely controlled by the reaction. The enhanced selectivity factor for CO2/N2, which decreases with increasing absorbent flow rate, reached as high as 1200 with 15 wt% K2CO3 absorbent.  相似文献   

17.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

18.
This paper tests the performance of microporous polyvinylidinefluoride (PVDF) hollow fiber in a gas absorption membrane process (GAM) using the aqueous solutions of piperazine (PZ) and 2-amino-2-methyl-1-propanol (AMP). Experiments were conducted at various gas flow rates, liquid flow rates and absorbent concentrations. Experimental results showed that wetting ratio was about 0.036% when used with the aqueous alkanolamine solutions, while that was 0.39% with aqueous piperazine solutions. The CO2 absorption rates increased with increasing both liquid and gas flow rates at NRe < 20. The increase of the PZ concentration showed an increase of absorption rate of CO2. The CO2 absorption rate was much enhanced by the addition of PZ promoter. The resistance of membrane was predominated as using a low reactivity absorbent and can be neglected as using absorbent of AMP aqueous solution. The resistance of gas-film diffusion was dominated as using the mixed absorbents of AMP and PZ. An increase of PZ concentration, the resistance of liquid-film diffusion decreased but resistance of gas-film increased. Overall, GAM systems were shown to be an effective technology for absorbing CO2 from simulated flue gas streams, but the viscosity and solvent-membrane relationship were critical factors that can significantly affect system performance.  相似文献   

19.
A number of U‐shaped K2NiF4‐type oxide hollow fiber membranes based on (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) were successfully prepared by a phase inversion spinning process. The PLNCG hollow fiber membranes were then used to investigate the effect of CO2 concentration in both the sweep gas and the feed air on the oxygen permeation flux. With pure CO2 as the sweep gas and even 10% CO2 in the feed air, a steady oxygen permeation flux of 0.9 mL/min·cm2 (STP) is obtained at 975°C during 310 h, and no decline of the oxygen permeation flux is observed. XRD, SEM and EDS characterizations show the spent membrane still maintains the intact microstructure and perfect K2NiF4‐type phase structure without carbonate, which indicates that the U‐shaped PLNCG hollow fiber membrane is a very stable membrane under CO2 atmosphere and has great potential for the practical application in oxyfuel techniques for CO2 capture and storage.©2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

20.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号