首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments with rice-wheat rotation were conducted during five consecutive years on a coarse-textured low organic matter soil. By amending the soil with 12t FYM ha–1, the yield of wetland rice in the absence of fertilizers was increased by 32 per cent. Application of 80 kg N ha–1 as urea could increase the grain yield of rice equivalent to 120 kg N ha–1 on the unamended soil. Although the soil under test was low in Olsen's P, rice did not respond to the application of phosphorus on both amended and unamended soils. For producing equivalent grain yield, fertilizer requirement of maize grown on soils amended with 6 and 12 t FYM ha–1 could be reduced, respectively to 50 and 25 per cent of the dose recommended for unamended soil (120 kg N + 26.2 kg P + 25 kg K ha–1). Grain yield of wheat grown after rice on soils amended with FYM was significantly higher than that obtained on unamended soil. In contrast, grain yield of wheat which followed maize did not differ significantly on amended or unamended soils.  相似文献   

2.
Although efficient use of N remains a critical constraint to productivity in irrigated lowland rice, a comprehensive database does not exist for the efficiency of on-farm management of N and other nutrients. In 1994, IRRI initiated its Mega Project on Reversing Trends of Declining Productivity in Intensive Irrigated Rice Systems in selected rice production domains of five tropical Asian nations to improve on-farm fertilizer-use efficiency and to monitor long-term productivity trends as related to fertilizers and other inputs. Data are reported here for the first crop cycle, the 1994–95 dry season. The indigenous soil N supply (INS) was estimated by aboveground crop N uptake and grain yield (GY) in plots without applied N established in farmers' fields under otherwise favorable growth conditions. The fertilizer N rate each farmer applied to his/her field surrounding these plots was recorded; GY was also measured in that area. In each domain, GY in unfertilized plots varied considerably among farms, as the range between maximum and minimum values within each domain was at least 2.8 t ha-1, thus of comparable magnitude to mean GY for these plots. Fertilizer N rates varied from 36–246 kg ha-1 across all domains, but their lack of relationship to INS contributed to relatively low fertilizer N efficiency and high variability in efficiency among farms. Mean agronomic efficiency (GY/applied N rate) for each domain was only 6–15 kg grain kg-1 N, while values for individual farmers ranged from 0 to 59 kg grain kg-1 N. Initial data on P and K fertilizer management also suggest highly variable applications at suboptimal efficiency. These results indicate the potential for greater fertilizer efficiency from improved congruence between the indigenous soil supply and applied fertilizer, and emphasize the need for field-specific nutrient management. Although agronomic efficiency and partial factor productivity (GY/applied N rate) can each be used to describe the efficiency of fertilizer applications, a complete analysis of nutrient management should include both terms, grain yield, fertilizer rates, and native soil fertility.  相似文献   

3.
Results of tracer pot experiments show that in tropical wetland rice soils, rice plants recovered 50–69% of applied fertilizer N in the first cropping, 7–12% in the second cropping and 1–4% in the third cropping. Recovery of fertilizer N in the presence of incorporated rice straw was decreased to 45–53% (first cropping), 9–12% (second cropping), and 3–5% (third cropping), respectively. Application of fertilizer N resulted in the increase in plant uptake of native soil nitrogen due to priming effect which valued 3–29% of total N uptake by the rice plants. A-values calculated show overestimated amounts of available soil N in relation to plant uptake of native soil N. Perhaps their use in assessing fertilizer requirement in tropical wetland rice soils would be of limited meaning.  相似文献   

4.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

5.
At very high nitrogen applications (480 and more kg N ha–1 yr–1) in field trials on all-grass swards the amount of N applied exceeded the amount of N harvested. In the humid temperate climate of the Netherlands in the subsequent spring approximately 25, 40, and 50% of this excess nitrogen was recovered as accumulated mineral nitrogen in the 0–100 cm layer of sandy, clay and heavy clay soil, respectively. The effect of this excess nitrogen on growth during the subsequent season was measured through the increase in DM and N yield over a reference treatment. In this season all treatments received a uniform application (40 kg N ha–1 cut–1). Residual effects were absent on sandy soil but distinct on the clay soils. On the clay soils each accumulated kg soil mineral nitrogen produced 15 kg DM. Assuming a relatively small contribution of residual nitrogen carried over in stubble, roots and organic matter, the accumulated soil mineral nitrogen would seem to be as effective as applied fertilizer nitrogen.  相似文献   

6.
This paper reviews some of the benefits of polyolefin-coated fertilizers (POCFs) with accurate controlled release properties. They are helpful in developing innovative rice farming systems, such as no-till direct seeded rice with single basal fertilization and transplanting of rice seedlings with single basal fertilization. These new cultivation systems can increase fertilizer efficiency and reduce farming costs. The recovery of basal N can be increased from 22–23% with conventional broadcast application of ammonium sulfate or urea to 79% withco-situs application of polyolefin-coated urea. The no-till rice cultivation of transplanting of rice seedlings with single basal application of POCFs decreased the farming cost by 65% as compared to that of the conventional rice cultivation. Theco-situs application of POCFs containing NPK reduced nitrate leaching and nitrous oxide emissions from cultivated soils with heavy fertilization. Since POCFs have various nutrient composition and release types, a variety of application methods to agricultural and horticultural plants are being developed in Japan.  相似文献   

7.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

8.
不同施肥方式对水稻生长、养分吸收和品质的影响   总被引:1,自引:0,他引:1  
研究不同施肥方式对田间水稻生长、养分吸收和品质的影响。结果表明,施肥能显著提高水稻产量,增产幅度在7.62%~41.90%,NPK与有机肥配合施用、施用控释肥分别增产31.75%和41.90%,氮磷钾对水稻增产作用NKP。氮肥农学利用率以缓控释肥处理最高,达11.08 kg/kg,氮肥利用率最高与最低相差31.10%;氮磷钾施肥+有机肥处理和控释肥处理田面水中速效氮含量显著低于其他处理,稻米品质最好。  相似文献   

9.
Nitrogen fertilization is a key input in increasing rice production in East, South, and Southeast Asia. The introduction of high-yielding varieties has greatly increased the prospect of increasing yields, but this goal will not be reached without great increases in the use and efficiency of N on rice. Nitrogen enters a unique environment in flooded soils, in which losses of fertilizer N and mechanisms of losses vary greatly from those in upland situations. Whereas upland crops frequently use 40–60% of the applied N, flooded rice crops typically use only 20–40%. There is a great potential for increasing the efficiency of N uptake on this very responsive crop to help alleviate food deficits in the developing world.This article reviews current use of N fertilizers (particularly urea) on rice, the problems associated with rice fertilization, and recent research results that aid understanding of problems associated with N fertilization of rice and possible avenues to increase the efficiency of N use by rice.  相似文献   

10.
Non-flooded mulching cultivation (NFMC) for lowland rice, as a novel water-saving technique, has been practiced in many areas of China since the 1990s. However, the information on NFMC effects on crop production, nitrogen and water use in rice–wheat rotations is still limited. A field experiment using 15N-labeled urea was conducted to evaluate the impacts of NFMC on crop yield, fertilizer N recovery and water use efficiency in rice–wheat rotations. Plastic film mulching (PM), and wheat straw and plastic film double mulching (SPM) resulted in the same rice grain yield (7.2 t ha–1) while wheat straw mulching (SM) and no mulching (NM) led to 5 and 10% yield reduction, compared with rice under traditional flooding (TF). In the rice–wheat rotation, crop productivity in PM, SM or SPM was comparable to that in TF but greater than in NM. Weed growth and its competition with rice for nitrogen were considered the main reason that led to yield decline in NM. Compared with TF, NFMC treatments did not obviously affect fertilizer N recoveries in plant and soil in both rice and wheat seasons. The total fertilizer N recoveries in crop, weed and soil in all treatments were only 39–44% in R–W rotations, suggesting that large N losses occurred following one basal N application for each growing season. Water use efficiency, however, was 56–75% greater in NFMC treatments than in TF treatment in the R–W rotation. The results revealed that NFMC (except NM) can produce comparable rice and wheat yields and obtain similar fertilizer N recovery as TF with much less water consumption.  相似文献   

11.
A large number of zero, half and full rate fertilizer trials were conducted on-farm in Southern Senegal with rainfed lowland rice (n = 24), maize (n = 48), and groundnuts (n = 18). Trial sites were located according to farmer selected criteria: soil texture in the case of rice; compound garden versus outer field in the case of maize; and, previous cropping history in the case of groundnuts. Quadratic fertilizer response curves using all the cases explained only 16–29% of the variance. Subsequent stratification of the fields by soil organic matter, texture, and pH permitted the identification of fertilizer responsive and non-responsive fields. Response curves using only the tests conducted on soils without a limiting constraint explained 36 to 47% of the variance. At half rate fertilization levels VCR's of 3.8 (maize), 5.8 (rice) and 6.9 (groundnuts) resulted. Within productive fields, level of weed control, percent barrenness and final stand at harvest explained much of the remaining variation in yields for rice (82%), maize (61%) and groundnuts (76%) respectively. Response curves were then used in an economic analysis to address on-farm fertilizer allocation issues. Based on survey results and field trial data, partial budgets for small and medium-sized farms were developed. This analysis showed marginal rates of return of 400 and 165 percent to half and full rate fertilization, respectively. This type of fertilizer validation program, conducted on farmer-selected sites, improved targeting of recommendations, and helped to identify agronomic practices that should result in reduced economic risk and increased fertilizer adoption by farmers.Research for this paper was conducted at the Institut Senegalais de Recherches Agricoles, and was supported by USAID Projects No. 685–0223 and No. 685–0205.  相似文献   

12.
To reduce severe soil degradation associated with agriculture an intensified land-use system is being promoted in West African countries. Most soils of the West African savanna zones are so poor that the efficiency of mineral fertilizers, if applied, is very low. For this reason and because of their high cost and unavailability, many small-scale farmers are reluctant to apply fertilizer. This work investigates a fertilizer management strategy using integrated soil fertility management with a leguminous cover crop (mucuna) so as to improve the soil fertility and increase the use efficiency of fertilizer. The experiment was conducted in the coastal savanna of Togo at Djaka Kopé. The aim was to evaluate the effectiveness of mucuna short fallow (MSF) in increasing maize grain yield through an improved use efficiency of mineral fertilizer. A 2-year maize–mucuna relay intercropping system was compared with continuous sole maize cropping. Fertilizer treatments were factorial combinations of 0, 50 and 100 kg nitrogen (N) ha–1 and 0, 20 and 40 kg phosphorus (P) ha–1. While maize grain yield was significantly increased by N fertilization, P did not show any important effect on grain yield. With no N and P applied, grain yield after MSF was on average 40% (572 kg ha–1) higher than without. The response to N was much greater than the response to MSF, indicating that N was undoubtedly the key element for maize yield building. P fertilization and MSF together positively influenced the apparent N recovery fraction (NRF). N uptake alone did not reflect on its own the yield obtained, and the relationship between grain yield and N uptake is shifted by MSF, with the grain yield increase per unit of N uptake being higher with than without MSF. Combining MSF and P fertilization may therefore lead to improved N use efficiency, making the application of fertilizer N (lower rates) more attractive to small-scale farmers.  相似文献   

13.
Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha–1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha–1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha–1 plus some P applied directly to wheat.  相似文献   

14.
The effect of soil clay mineralogy on the efficiency of (NH4)2SO4 in flooded rice was investigated in a greenhouse pot trial with four clayey soils of diverse clay mineralogies (x-ray amorphous, montmorillonite, vermiculite, beidellite). KCl (75 kg K ha–1) and triple superphosphate (25 kg P ha–1) were incorporated in the soil with and without (NH4)2SO4 (100 kg N ha–1) before transplanting 1-week-old IR-36 rice seedlings which were then grown to maturity under flooded conditions. Efficiency of (NH4)2SO4 was inferred from the response of agronomic characteristics such as tiller number, height, grain and straw yields to NH4 fertilization.The results showed greatest efficiency of (NH4)2SO4 on the x-ray amorphous soil, followed by montmorillonitic soil; efficiency was much lower on the vermiculitic and negligible on the beidellitic soil.Soil clay mineralogy may be an important factor in the reduced efficiency of NH4 (or NH4-forming) fertilizers in certain rice soils.  相似文献   

15.
To increase the fertilizer-N efficiency in lowland rice (Oryza sativa L.) cultivation, new management practices are needed. Main cause of the present low efficiency is the low N recovery by plants, as a considerable part of the N applied is lost; deep placement techniques improve the recovery. A pneumatic injector, with which urea prills can be point-placed at a depth of 5–10 cm in paddy soils, was tested in 38 on-farm trials in 1989/90, mostly during the wet season. The experiments, located in Africa and Asia, focussed on differences in grain yield between conventional methods of broadcasting urea and injection by the pneumatic injector, at recommended N-rates. The study shows that the pneumatic injector is effective as a tool to improve the N fertilizer efficiency. The average yield increases per region, resulting from the use of the injector, ranged from about 250 to 1300 kg grain ha–1. The value of the yield increase would allow most farmers to recover the costs of the injector within one season, even if labour was hired to carry out the injections. The average labour requirement of the injector was 40 hours ha–1. In Indonesia, injection of prilled urea gave yields similar to those obtained with urea briquettes.  相似文献   

16.
In a field study, the influence of organic mulches viz. paddy straw and citronella (Cymbopogon winterianus Jowitt) distillation waste on herb and essential oil yield and fertilizer N use efficiency in Japanese mint (Mentha arvensis L.) were examined for two years. Herb yield (dry weight) increased by 17 and 31% with paddy straw and citronella distillation waste, respectively over the use of no mulch. Essential oil yield also significantly increased due to mulching. A significant response to N was observed with 200 kg N ha–1 in unmulched plots as against 150 kg N ha–1 in mulched plots. Mulched soils have been observed to contain 2 to 4% higher moisture as compared to unmulched soils. Nitrogen uptake by plants increased by 18 and 25% over no mulch with using paddy straw and citronella distillation waste, respectively.  相似文献   

17.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

18.
A glasshouse experiment was conducted to study the balance sheet of15N labelled urea at three rates (zero, 31.48 and 62.97 mmol N pot–1) applied to rice under flooded conditions with two moisture regimes (continuous and alternate flooding) using three Australian vertisols differing in organic carbon level. Walkley-Black organic carbon values for the three soils were 0.65, 2.13 and 3.76 for the low carbon (LC), medium carbon (MC) and high carbon (HC) soils respectively.Rice dry weight and nitrogen uptake was significantly affected by N fertilizer rates, water regimes and soils. Alternate flooding gave much lower dry weight and nitrogen uptake than continuous flooding and the LC soil gave lower dry weight and nitrogen uptake than for the MC and HC soils.Recovery of15N labelled urea fertilizer in the rice plant was low (15.4 to 38.4%) and the15N urea not accounted for in the plant or soil and presumed lost was high (36.2 to 76.0%). Recovery was lower and loss higher under alternate flooding and for the LC soil. There was no effect of fertilizer rate. The results obtained stress the need for careful management to reduce losses of nitrogen fertilizer, particularly for soils low in organic carbon.  相似文献   

19.
Two field experiments were conducted in 1988 and 1989 on an acid sandy soil in Niger, West Africa, to assess the effect of phosphorus (P), nitrogen (N) and micronutrient (MN) application on growth and symbiotic N2-fixation of groundnut (Arachis hypogaea L.). Phosphorus fertilizer (16 kg P ha–1) did not affect pod yields. Addition of MN fertilizer (100 kg Fetrilon Combi 1 ha–1; P + MN) containing 0.1% molybdenum (Mo) increased pod yield by 37–86%. Nitrogen concentration in shoots at mid pod filling (72 days after planting) were higher in P + MN than in P – MN fertilizer treatment. Total N uptake increased from 53 (only P) to 108 kg N ha–1 by additional MN application. Seed pelleting (P + MoSP) with 100 g Mo ha–1 (MoO3) increased nitrogenase activity (NA) by a factor of 2–4 compared to P treatment only. The increase in NA was mainly due to increase in nodule dry weight and to a lesser extent to increase in specific nitrogenase activity (SNA) per unit nodule dry weight. The higher NA of the P + MoSP treatment was associated with a higher total N uptake (55%) and pod yield (24%). Compared to P + MoSP or P + MN treatments application of N by mineral fertilizer (60 kg N ha–1) or farmyard manure (130 kg N ha–1) increased only yield of shoot dry matter but not pod dry matter. Plants supplied with N decreased soil water content more and were less drought tolerant than plants supplied with Mo. The data suggest that on the acid sandy soils in Niger N deficiency was a major constraint for groundnut production, and Mo availability in soils was insufficient to meet the Mo requirement for symbiotic N2-fixation of groundnut.  相似文献   

20.
The quantities of nitrogen, phosphorus and potassium supplied by an average African soil cleared from bush fallow, assuming no losses, were approximated. Values ranged from 23 to 120 Kg N ha–1, 1.8 to 12 Kg P ha–1, 47 to 187 Kg K ha–1, depending on type of fallow, length of fallow, drainage and extent of depletion of native supplies. Additional amounts of 4 to 5 Kg N ha–1, 4 to 6 Kg P ha–1 and 14 to 20 Kg K ha–1 are obtained from the ash.Using crop nutrient removal data and approximate efficiencies of native and fertilizer N, P and K, fertilizer requirements at the reconnaissance level were estimated for selected target yields. For newly cleared uplands at cropping/fallow ratio of 2:7, N fertilizer requirements for cassava (30 t ha–1), maize (4 t ha–1), and sweet potato (16 t ha–1), were 138, 98, 42 kg ha–1 respectively. Wetland rice (4 t ha–1) required 55 kg N ha–1. Corresponding P fertilizer requirements for cassava, maize, sweet potato, upland rice (1.5 t ha–1) and ground-nut (1 t ha–1) were 190, 80, 30, 30 and 16 kg P ha–1 respectively. Wetland rice required 83 kg P ha–1. Substantial residual values of applied P are to be expected. Cassava required 60 kg ha–1 of K on newly cleared land. In soils of lowered nutrient status higher N, P, and K fertilizer requirements were indicated for all crops.Land use data from Sierra Leone were used to illustrate how the total quantities of N, P and K fertilizers in a country in the forest zone of Africa can be approximated. Fertilizer needs in Sierra Leone were in decreasing order P > N K. N, P and K requirements were estimated to be 10,000 t, 20,000 t and 4,000 t respectively. The nutrient balance sheet method described in this paper is a useful tool to estimate the order of magnitude of fertilizer requirement at selected target yields for countries in Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号