首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
几种新的汽车替代燃料   总被引:1,自引:0,他引:1  
随着世界经济的发展和人们物质生活水平的不断提高,世界各国对能源的需求量不断增加,按照这样的增长速度,目前人类使用得比较多的几种能源资源很快被耗尽,能源使用问题成了世界各国最关心的问题之一,寻找新的替代能源势在必行。本文分析了目前世界对一次能源、特别是石油的需求增长情况,并针对汽车燃料,从物理化学性质、能量特点、排放特点及经济性几个方面比较了几种汽车替代能源。通过比较发现在几种替代能源中,氢能的综合经济效益最高,但目前在生产、储运及加载的成本等方面还存在的一些问题,尚不能大规模投入使用。在这样的情况下,甲醇是比较合适的汽车替代燃料。  相似文献   

2.
甲醇燃料——最具竞争力的可替代能源   总被引:4,自引:4,他引:4  
从能源安全和环境问题的角度,指出用清洁燃料替代石油势在必行;分析了各种石油替代能源,指出煤制甲醇是最具竞争力的可替代能源;进一步分析了甲醇燃料的动力性能、毒性和对环境的影响,并分别比较了煤变油与煤制甲醇清洁燃料,甲醇燃料与石油燃料;最后得出的结论是:世界各国都将推行煤制甲醇燃料的技术路线,用于解决石油替代能源的问题。  相似文献   

3.
世界能源危机与环境污染问题促使汽车行业能源体系转型,可再生、节能、环保、清洁的新型汽车替代燃料成为汽车行业的新宠.根据燃料是否可再生,将汽车替代燃料分为不可再生汽车替代燃料和可再生汽车替代燃料,并对天然气、液化石油气、醇醚类燃料、氢能源、植物油燃料、生物质裂解气燃料等汽车替代燃料与汽油、柴油等传统汽车燃料进行了分析和比较,总结了汽车替代燃料相对于传统汽车燃料的优点与缺点,并对汽车替代燃料的发展前景进行了展望.  相似文献   

4.
醇燃料-未来汽车的石油替代燃料   总被引:6,自引:0,他引:6  
根据我国能源资源状况,并结合现有车用燃料特性,指出寻求并确定符合我国能源特点的石油替代燃料已是当务之急。通过对几种主要替代燃料的分析研究表明:醇类燃料尤其是甲醇是最理想的替代燃料。开展甲醇作为车用燃料的系统研究与应用对于我国能源及汽车工业实现可持续发展至关重要。  相似文献   

5.
孙征宇 《上海节能》2013,(4):28-31,37
随着社会经济水平的提高,汽车逐步进入百姓家庭,大大方便了交通出行的需求,然而另一方面汽车排放的有害气体、污染物以及能源短缺等问题也越发严重。近阶段我国许多城市出现雾霾天气,城市空气质量处于严重污染程度,主要原因之一就是汽车排放。为此,各国广泛开展汽车替代燃料的研发。其中天然气汽车以其低排放、抑制温室效应和摆脱高碳能源依赖等特点,在世界范围内得到普及和推广。文章通过梳理总结世界各国推动天然气汽车发展的经验,结合上海城市的特点与实际条件,提出上海未来发展天然气汽车的原则与建议。  相似文献   

6.
本文作者结合自己在氢发动机方面的研究结果,分析了氢在汽车上应用时的特点,总结了汽车燃用氢时所存在的问题及解决方法。并介绍了目前世界各国在此方面的研究情况。  相似文献   

7.
液化石油气作汽车燃料浅议哈尔滨市燃气安全管理处鲍靖宇1问题的提出随着世界各国汽车工业迅速发展,汽车数量不断增加,燃料需求矛盾越来越大,世界性能源日益紧张,汽车尾气排放已成为公害。据国家环保部门测定,城市主要道路的一氧化碳、氮氢化物等对人体有毒气体都处...  相似文献   

8.
生物质能汽车的动力系统技术   总被引:1,自引:0,他引:1  
能源和环境问题成为本世纪世界各国共同面临的两个重大问题。寻找新的"清洁代用燃料"是人类的必然选择。生物质能源是一种可作为车辆发动机燃料的新型清洁低廉的可再生能源,因此研究和开发生物质能汽车动力系统技术有利于改变我国能源消费结构、维护国家能源安全和环境保护。介绍了生物质燃料汽车动力系统技术,主要包括固体燃料裂解气化技术、气体燃料净化技术以及使用燃气式发动机技术等。为研究和开发使用生物质燃料汽车提供了一定的指导和参考信息,为其今后的深入研究提供了一定的参考。  相似文献   

9.
氢燃料在汽车上的应用   总被引:4,自引:0,他引:4  
本文作者结合自己在氢发动机方面的研究结果,分析了氢在汽车上应用时的特点,总结了汽车燃用氢时所在的问题及解决方法。并介绍了目前世界各国在此方面的研究情况。  相似文献   

10.
世界二甲醚应用开发现状   总被引:1,自引:0,他引:1  
二甲醚因其对人体无毒、使用安全,对环境友好,并具有良好的燃料性能,可部分替代液化气民用燃料以及替代柴油作为清洁的汽车燃料,加之其原料来源丰富,生产成本低,因此其生产与应用技术的研发受到世界各国的关注。综述了当前世界及中国二甲醚应用技术的进展情况,对我国二甲醚应用技术的研发提出建议。  相似文献   

11.
Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful.The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel.The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended.  相似文献   

12.
新能源汽车的发展现状与对策   总被引:1,自引:0,他引:1  
一直以来,中国及世界上的大部分国家都受化石燃料等不可再生能源所带来的环境问题和可持续发展问题所困扰.阐述了世界能源日渐匮乏的现状和各国采取的应对措施.汽车消耗了全球汽油的40%,其排放的尾气占大气污染源总量的50%以上.随着资源与环境双重压力的增大,发展新能源汽车势在必行.浅议了汽车尾气产生的环境污染和治理方法,总结了部分国家和地区新能源汽车的发展现状和政策法规.旨在普及新能源汽车知识,使人们对其产生深刻印象,加大新能源汽车的推广力度.  相似文献   

13.
Demand for fossil fuels is increasing day by day with the increase in industrialization and energy demand in the world. For this reason, many countries are looking for alternative energy sources against this increasing energy demand. Hydrogen is an alternative fuel with high efficiency and superior properties. The development of hydrogen-powered vehicles in the transport sector is expected to reduce fuel consumption and air pollution from exhaust emissions. In this study, the use of hydrogen as a fuel in vehicles and the current experimental studies in the literature are examined and the results of using hydrogen as an additional fuel are investigated. The effects of hydrogen usage on engine performance and exhaust emissions as an additional fuel to internal combustion gasoline, diesel and LPG engines are explained. Depending on the amount of hydrogen added to the fuel system, the engine power and torque are increased at most on petrol engines, while they are decreased on LPG and diesel engines. In terms of chemical products, the emissions of harmful exhaust gases in gasoline and LPG engines are reduced, while some diesel engines increase nitrogen oxide levels. In addition, it is understood that there will be a positive effect on the environment, due to hydrogen usage in all engine types.  相似文献   

14.
Hydrogen gas is increasingly studied as a potential replacement for fossil fuels because fossil fuel supplies are depleting rapidly and the devastating environmental impacts of their use can no longer be ignored. H2 is a promising replacement energy storage molecule because it has the highest energy density of all common fuels by weight. One area in which replacing fossil fuels will have a large impact is in automobiles, which currently operate almost exclusively on gasoline. Due to the size and weight constraints in vehicles, on board hydrogen must be stored in a small, lightweight system. This is particularly challenging for hydrogen because it has the lowest energy density of common fuels by volume. Therefore, a lot of research is invested in finding a compact, safe, reliable, inexpensive and energy efficient method of H2 storage. Mechanical compression as well as storage in chemical hydrides and absorption to carbon substrates has been investigated. An overview of all systems including the current research and potential benefits and issue are provided in the present paper.  相似文献   

15.
Worldwide, research and policy momentum is increasing in the move towards a hydrogen economy. Australia is one of the highest per capita users of energy, but relies heavily on fossil fuels to fulfil its energy requirements—thus making it one of the highest per capita polluters. It is also a country rich in natural resources, giving it the full range of options for a hydrogen economy. With the first Australian Hydrogen Study being completed by the end of 2003, there has as yet been little analysis of the options available to this country specifically. This paper reviews the resources, production and utilisation technology available for a hydrogen economy in Australia, and discusses some of the advantages and disadvantages of the different options. It points out that coal, natural gas, biomass and water are the most promising hydrogen sources at this stage, while solid oxide and molten carbonate fuel cells may hold the advantage in terms of current expertise for utilising hydrogen rich gases for stationary power in Australia.  相似文献   

16.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   

17.
The majority of energy being used is obtained from fossil fuels, which are not renewable resources and require a longer time to recharge or return to its original capacity. Energy from fossil fuels is cheaper but it faces some challenges compared to renewable energy resources. Thus, one of the most potential candidates to fulfil the energy requirements are renewable resources and the most environmentally friendly fuel is Hydrogen. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Hydrogen energy became the most significant energy as the current demand gradually starts to increase. It is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available, while some of these technologies are still under development. Therefore, the global interest in minimising the effects of greenhouse gases as well as other pollutant gases also increases. In order to investigate hydrogen implementation as a fuel or energy carrier, easily obtained broad-spectrum knowledge on a variety of processes is involved as well as their advantages, disadvantages, and potential adjustments in making a process that is fit for future development. Aside from directly using the hydrogen produced from these processes in fuel cells, streams rich with hydrogen can also be utilised in producing ethanol, methanol, gasoline as well as various chemicals of high value. This paper provided a brief summary on the current and developing technologies of hydrogen that are noteworthy.  相似文献   

18.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

19.
Overreliance on fossil fuels for human energy needs, combined with the associated negative environmental consequences in terms of greenhouse gas emissions, has shifted our focus to renewable energy sources. Hydrogen has been identified by researchers as an energy source. Hydrogen is a non-carbon-based energy resource that has the potential to replace fossil fuels. This resource is seen as an alternative fuel since it may be produced using environmentally friendly methods.Hydrogen storage is a critical component of the hydrogen economy, particularly when hydrogen utilization on a large scale is required. This paper presents a review of worldwide underground operating and potential sites to provide a clear understanding of the current status of hydrogen storage in the world.The literature survey indicated that underground geological structures have been used to successfully store hydrogen. Some of the criteria used to select these sites for underground hydrogen storage include but are not limited to geological conditions, storage location, availability of brine, presence of insoluble impurities such as dolostone, limestone, or shale, and socio-economic characteristics.The key issues with the hydrogen storage in the subsurface geological structures include but are not limited to microbial, hydrogeological, hydrodynamics, geomechanics, and geochemical facilitated by injected hydrogen which significantly impact the success and operational efficiency of the projects.  相似文献   

20.
The adoption of new environmentally responsible technologies, as well as, energy efficiency improvements in equipment and processes help to reduce CO2 rate emission into the atmosphere, contributing in delaying the consequences of intensive use of fossil fuels. For more effective actions, it is necessary to make the transition from the fossil-based to the renewable source economy. In this context, hydrogen fuel has a special role as clean vector of energy. Hydrogen has the potential to be decisive in mitigating greenhouse gas emissions, but fossil fuels high profitability due to global energy dependency actually drives the global economy.While renewable energy sources are not worldwide fully established, new technologies should be developed and used for the recovery of energetic streams nowadays wasted, to decarbonize hydrocarbons and to improve systems efficiency creating a path that can help nations and industries in the needed energy economy transition. Hydrogen gas can be generated by various methods from different sources such as coal and water. Currently, almost all of the hydrogen production is for industrial purpose and comes from the Steam Reforming, while the use of hydrogen in fuel cells is only incipient.The article analysis the plasma pyrolysis of hydrocarbons as a decarbonization option to contribute as a step towards hydrogen economy. It presents the Carbon Black and Hydrogen Process (CB&H Process) as an alternative option for hydrogen generation at large scale facility, suitable for supplying large amounts of high-purity carbon in elemental form. CB&H Process refers to a plant with hydrogen thermal plasma reactor able to decompose Hydrocarbons (HC's) into Hydrogen (H2) and Carbon Black (CB), a cleaner technology than its competing processes, capable of generating two products with high added value. Considering the Brazilian context in which more than 80% of the generated electricity comes from renewable sources, the use of electricity as one of the inputs in the process does not compromise the objective of reducing greenhouse gas emissions. It is important to consider that the use of renewable energy to produce two products derived from fossil fuels in a clean way represents integration of technologies into a more efficient system and an arrangement that contributes to the transition from fossil fuels to renewables.The economic viability of the CB&H process as a hydrogen generation unit (centralized) for refining applications also depends on the cost of hydrogen production by competing processes. Steam Methane Reforming (SMR) is a widespread method that produces twice the amount of hydrogen generated by natural gas plasma pyrolysis, but it emits CO2 gas and consumes water, while CB&H process produces solid carbon. For this reason, the paper seeks the carbon production cost by plasma pyrolysis as a breakeven point for large-scale hydrogen generation without water consumption and carbon dioxide emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号