首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of competition between the ozone direct reaction with compounds in water, ozone-hydroperoxide ion reaction leading to free radicals in the O3/H2O2 process, and the photolysis of ozone in the O3/UV process are discussed in terms of diffusion and reaction times to establish conditions for these reactions to be competitive. Film theory and chemical kinetic concepts then are applied to estimate initial rates of ozone absorption and consumption, removal rates of compounds present in water, and the importance of the radical oxidation path versus direct ozone and/or photolysis reactions.  相似文献   

2.
This study was conducted to develop a kinetic model of the ozone/UV process by monitoring the trend of in-situ hydrogen peroxide formation. A specifically devised setup, which could continuously measure the concentration of hydrogen peroxide as low as 10 μg/L, was used. The kinetic equations, comprised of several intrinsic constants with semi-empirical parameters (kchain and kR3) were developed to predict the time varied residual ozone and hydrogen peroxide formed in situ along with the hydroxyl radical concentration at steady state,[OH°]ss, in the ozone/UV process. The optimum ozone dose was also investigated at a fixed UV dose using the removal rate of UV absorbance at 254 nm (A254) in raw drinking water. The result showed that the continuous monitoring of hydrogen peroxide formed in situ in an ozone/UV process could be used as an important tool to optimize the operation of the process.  相似文献   

3.
The effects of ozone and ozone/hydrogen peroxide on BDOC formation were studied with the “Ozotest” method, a laboratory technique that permits the assessment of oxidation efficiency. Oxidation treatments were performed on river water and sand filter effluent samples. Ozone consumption, reduction of UV absorbance, and BDOC formation were monitored during the experiments. The ratio of 0.35-0.45 mg H2O2 per mg O3 used to degrade pesticides also was optimal for the oxidation of organic matter. BDOC formation versus ozone dose curves with ozone alone or ozone/peroxide system were similar. BDOC formation was optimum at an applied ozone dose of 0.5-1 mg O3/mg C (contact time = 10 min). The ozone/peroxide system yielded lower BDOC values than ozone alone, a phenomenon related to differences in byproducts generated by the two oxidative systems. Moreover, reduction of the concentration of DOC was higher with ozone/hydrogen peroxide than with ozone alone. For both oxidant systems, BDOC formation occurred during the first minute of treatment.  相似文献   

4.
The efficiency of ozonation and advanced oxidation processes such as ozone/UV, ozone/H2O2 and H2O2/UV was assessed for chlorinated hydrocarbons using a closed batch-type system. 1,1-Dichloropropene (DCPE), trichloroethylene (TCE), 1-chloropentane (CPA), and 1,2-dichloroethane (DCA) were used as model compounds.

The direct reaction between substrates and ozone predominated at lower pH, which resulted in the efficient oxidation of the olefin, DCPE. At higher pH, ozonation resulted in more efficient oxidation of the chlorinated alkanes, with a corresponding decrease in the efficiency of DCPE oxidation. Consistent results were observed for ozone/H2O2 and ozone/UV treatment. Due to slow UV-induced decomposition of H2O2, the process using H2O2/UV (254 nm) resulted in very slow oxidation of all four compounds.

The total ozone requirement to achieve a given degree of elimination (to 37% of the original concentration), δ0.37, was used to assess the combined effects of the direct and indirect reactions for different types of waters.  相似文献   


5.
Applied ozone dosages of 20, 25, and 30 mg/L to lake water utilized by the city of Shreveport, LA produced no significant reductions in trihalomethane formation potentials (THMFP). However, the addition of 20 mg/L of hydrogen peroxide and/or 0.67 W/L of UV radiation (254 nm) in combination with ozone produced decreases in THMFP of over 60% in 60 minutes. Smaller THMFP decreases were seen with shorter contact times. The use of H2O2 and/or UV in combination with O3 increased the percentage of applied ozone consumed by the lake water (i.e., enhanced the ozone mass transfer) five times over simple ozonation.  相似文献   

6.
The present study investigates the decomposition of N-Methyl-2-Pyrolidone (NMP) using conventional ozonation (O3), ozonation in the presence of UV light (UV/O3), hydrogen peroxide (O3/H2O2), and UV/H2O2 processes under various experimental conditions. The influence of solution pH, ozone gas flow dosage, and H2O2 dosage on the degradation of NMP was studied. All ozone-based advanced oxidation processes (AOPs) were efficient in alkaline medium, whereas the UV/H2O2 process was efficient in acidic medium. Increasing ozone gas flow dosage would accelerate the degradation of NMP up to certain level beyond which no positive effect was observed in ozonation as well as UV light enhanced ozonation processes. Hydrogen peroxide dosage strongly influenced the degradation of NMP and a hydrogen peroxide dosage of 0.75 g/L and 0.5 g/L was found to be the optimum dosage in UV/H2O2 and O3/H2O2 processes, respectively. The UV/O3 process was most efficient in TOC removal. Overall it can be concluded that ozonation and ozone-based AOPs are promising processes for an efficient removal of NMP in wastewater.  相似文献   

7.
The effect of UV radiation on the removal of formic, oxalic and maleic acids from water by metallic ion (Fe2+ or Cu2+)/H2O2 and metallic ion/O3 was studied and compared. The results showed that metallic ion/O3/UV has higher efficiency than metallic ion/H2O2/UV for oxalic acid removal. UV radiation significantly increases the efficiency of metallic ion/H2O2 for formic and maleic acids removal while its effect on the efficiency of metallic ion/O3 for formic acid removal is minor. However, at pH 2, O3 alone showed higher efficiency than metallic ion/H2O2/UV for formic acid removal. Contrary to the relative efficiency of metallic ions in the previous systems, Cu2+ exhibited higher rate than Fe2+ for the removal of the degradation products of maleic acid by O3. UV radiation exhibited a minor effect on the efficiency of Cu2+/O3, while it exhibited a large effect on the efficiency of Fe2+/O3 for the removal of the degradation products of maleic acid.  相似文献   

8.
Both the direct ozone reaction and the indirect hydroxyl radical reaction are important in ozonation of drinking water. This article investigates the effectiveness of ozone versus the advanced oxidation process of ozone coupled with hydrogen peroxide in the formation of bromate. The investigation was conducted on a pilot scale at various H2O2:O3 dose ratios of 0.1, 0.2, and 0.35 at different times of the year. The results of this study show a reduction in bromate with the addition of hydrogen peroxide to an ozone system versus ozone alone. It was also observed that bromate increased with increased H2O2:O3 ratios; however, concentrations were still lower than those in the ozone only system.  相似文献   

9.
Model dyeing and laundering wastewaters produced during two basic technological operations of the textile industry were subjected to treatment by advanced oxidation processes (AOPs). The following agents were used: ozone (O3), hydrogen peroxide (H2O2) and UV radiation. They were applied separately and in all possible combinations: O3 + UV, O3 + H2O2, UV + H2O2, as well as all three at the same time: O3 + UV + H2O2. Effluents before and after the treatment were analyzed according to requirements of the Polish Standards that included pH, color threshold, COD and concentration of anionic and non-ionic surfactants. Ozonation was carried out in a lab-scale bubble column reactor with a centrally located UV burner. The most effective version of AOPs proved to be the simultaneous use of all three agents. In the case of such treatment of dyeing wastewaters nearly complete discoloration and full decomposition of surface-active substances were obtained at 80% reduction of COD. A similar tendency was observed in the case of laundering wastewater, though in that case the results were slightly worse, which may be explained by much higher initial concentrations of the pollutants. Good treatment effects have also been obtained in combined treatment by simultaneous use of hydrogen peroxide and ozone.  相似文献   

10.
With the appearance of chlorine resistant microorganisms such as Cryptosporidium parvum and Giardia lamblia in drinking water, significant attention has been drawn to the sequential application of multiple disinfectants including ozone, chlorine dioxide, and UV as a primary disinfectant. However, few studies have reported about the inactivation behavior of ozone-based AOP (advanced oxidation process) or its sequential application combined with other disinfectants. This is especially important since ozone itself experiences difficulty in the inactivation of these pathogens, especially at low temperatures: This study investigates the enhanced inactivation of Bacillus subtilis spores by the presence of an OH radical in the O3/H2O2 system and the synergistically enhanced inactivation in the application of the O3/H2O2 system followed by Cl2. The results suggest that the O3/H2O2 process can be considered as one of the viable alternatives when O3 alone does not satisfy the disinfection requirement.  相似文献   

11.
The photolysis of ozone and formation of hydrogen peroxide were investigated in solution of pH 2–7, in a 200 cm3 photoreactor in the incident photon flow range 9.6 x 10?8 - 4.2 x 10?7 einstein s?1. The quantum yield of the primary photochemical reactions was measured in a direct way by suppressing the secondary radical reactions. The determined quantum yields of the photo-decompositions of ozone and hydrogen peroxide were 0.42 ± 0.042 ± 0.04 and 0.49 ± 0.04, respectively.

A correct mathematical treatment is given for calculation of the light absorption of the individual components of a multi-absorbent reaction mixture.

On the basis of the literature data and die present results, a probable chemical and reaction kinetic model was proposed to characterize the investigated reaction systems. Reaction kinetic simulations demonstrated that the model predicts a good fit to the measured data with the preferred literature rate constants, except that for the HO3 radical decomposition reaction. A reasonable reduction of this rate coefficient value is in accordance with the latest published results.  相似文献   


12.
The authors monitored hydrogen peroxide (H2O2), ozone (O3), and apparent hydroxyl radical (OH·) concentrations in the liquid phase, along with gas phase ozone when operating an advanced oxidation (AO) system that included H2O2, O3, sonication, and underwater plasma (UWAP). The OH· radical converted non-fluorescent terephthalic acid to fluorescent hydroxyterephthalic acid (HTA). As determined from HTA formation, when a 500 ppm H2O2 dose in tap water was combined with O3 and sonication, nearly twice as much OH· (0.72 ppm) accumulated than with H2O2 alone. When UWAP accompanied H2O2, O3, and sonication, these together generated 15–35% more OH· than when UWAP was excluded. When ozone was introduced into this AO system, the AO system decomposed almost all the O3. This research has been conducted as a part of a study that has appraised this advanced oxidation system (Sonoperoxone) in green sand foundries, where it has diminished volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions by 20–75%; and clay and coal consumption by 20–35%.  相似文献   

13.
For improving the treatment of landfill leachate by combination O3/H2O2, ceramic Raschig rings (CRR) with different surface areas were added to enhance mass transfer of ozone into liquid phase. To determine optimal conditions of reaction, pH and reaction time was also studied. The optimal pH range of 8–9, optimal reaction time of 80 min was identified in this research. CRR contribute to the significant improvement of efficiency of landfill leachate treatment by O3/H2O2 systems. With added CRR of 728 m2/m3 surface area, color, COD and TOC removal was increased in comparison with experiment without CRR is 8%, 14%, and 9%, respectively. In this condition, the ozone utilization efficiency was also higher than that of experiment without CRR. Content of O3 was also identified uses 3.441 kg O3/kg COD.  相似文献   

14.
Ozone application was investigated for its effectiveness in the removal of ethylenediaminetetraacetic acid (EDTA) from bleaching effluent. The objectives were to compare the efficiency of ozone reaction on Na-EDTA solution with pure Fe3+-EDTA complex and EDTA complexes in bleaching effluent, and to test if changing pH and addition of hydrogen peroxide (H2O2) increases the removal of EDTA. Small ozone doses destroyed high proportions of Na-EDTA. This effect was diminished when EDTA formed complexes with other metal ions. It was shown that EDTA present in bleaching effluent was more easily oxidizable than in pure Fe3+-EDTA solution. Variation of initial pH value had no significant influence on the removal of Na-EDTA. Addition of hydrogen peroxide did not increase degradation of EDTA in bleaching effluent.  相似文献   

15.
It was verified that the ozone-hydrogen peroxide treatment (O3/H2O2) was very effective for decomposing trichloroethylene (TCE) in groundwater. The reaction efficiency of O3/H2O2 was 40% better than that of ozone treatment by using a diffuser type reactor and the optimum operating conditions were also revealed by laboratory-scale experiments and computer simulations. Taking these results into consideration, the 2-port ozone injection method using an ejector-type reactor was investigated to decompose TCE more rapidly and efficiently, and it was revealed that the ozone dose necessary for satisfying the Japanese water quality standard for drinking water (0.03mg/L) by the 2-port ozone injection method was 13% less than that by the conventional 1-port ozone injection method under the condition of the same amount of ozone injected. Also, the effectiveness of the 2-port injection method was proved by a sequential plant-scale experiment for about 40 days.  相似文献   

16.
Phenanthrene is considered to be a hazardous pollutant and is listed as a priority pollutant by the U.S. EPA. This laboratory study was designed to investigate the degradation of phenanthrene in water solutions by ozone, by ozone in combination with hydrogen peroxide and UV-radiation and by UV-radiation only, to compare the efficiency of different oxidation processes at different values of pH = 3, 7 and 9. On the basis of kinetic curves of phenanthrene destruction, the chemical reaction rate constants were calculated. The results obtained confirmed that phenanthrene oxidation proceeds mostly with molecular ozone and the best method for reducing its concentrations is an ozonation in neutral medium. The rate of phenanthrene autoxidation is rather slow and does not depend on pH nor H2O2 addition. UV-radiation alone is also unable to reduce phenanthrene concentration significantly.  相似文献   

17.
To obtain an idea of the magnitudes of the ozone loss rates rO3 in practical applications of ozone, an overall determination of the ozone decay profiles and rate constants was carried out in four different systems. These systems resemble different conditions for industrial application of ozone and the peroxone process, such as in the field of micro electronics, drinking water purification, disinfection, etc. Therefore, the behavior of ozone was monitored in the pH range from 4.5 to 9.0, in pure water and phosphate buffered systems in absence and presence of small amounts of hydrogen peroxide (10?7 M to 10?5 M H2O2). First the reproducibility of the ozone decay profiles was checked and from the various kinetic formalism tests, the reaction order 1.5 for the ozone decay rate has been selected. As expected, hydrogen peroxide increases the decay rates. In pure systems, added concentrations of 10?7M H2O2 already cause a remarkable acceleration of the ozone decay in the acidic and neutral pH range compared to the pure systems. However for alkaline pH conditions almost no effect of the low hydrogen peroxide concentrations was noticed. Contradictory to literature data, in the absence of hydrogen peroxide, ozone displays faster decays in the buffered systems of low ionic strength of 0.02 compared to pure water. This acceleration is more pronounced for acidic pH conditions. Low concentrations of phosphate may indeed accelerate the ozone decay in the presence of organic matter. Adding H2O2 concentrations below 10?5M to phosphate buffered solutions has a negligible effect on the ozone decay rate compared with pure water systems, except for pH 7. It appears that phosphate masks the effect of hydrogen peroxide below 10?5 M as tested here. Thus the application of AOP's by adding low concentrations of hydrogen peroxide is not well feasible in the presence of phosphate buffers in pure water systems.  相似文献   

18.
CATAZONE is a new process of heterogeneous catalytic ozonation in which water is ozonated in the presence of a solid catalyst composed of titanium dioxide. The efficiency of this O3/TiO2 system has been compared to the two well-known oxidant systems: ozone alone and ozone combined with hydrogen peroxide.

This comparison was undertaken on three models of natural organic compounds : an aquatic fulvic acid, a protein and a disaccharide. The first results showed the following order of relative efficiency: O3/TiO2 > O3/H2O2 > O3 as far as Total Organic Carbon (TOC) removal was concerned.  相似文献   


19.
Experimental research into the oxidative treatment of aqueous solutions and wastewaters containing phenolic compounds was undertaken. Ozone, supported by short wavelength UV-irradiation, hydrogen peroxide and titanium dioxide catalyst, was selected as an oxidant in the following combinations: O3, O3/H2O2, O3/UV, O3/TiO2, O3/UV/H2O2 and O3/UV/TiO2. 5-Methylresorcinol was chosen as a model compound for the experiments with synthetic phenolic solutions. The results obtained from these experiments were compared with the results of oxidative purification of wastewaters produced from the thermal treatment of oil shale in Estonia.  相似文献   

20.
The degradation of 1,4-dioxane was investigated on a laboratory scale. The extents of degradation and/or removal of 1,4-dioxane by ozonation at pH 6–8, UV irradiation, aeration, and addition of H2O2 were very limited. On the other hand, the degradation of 1,4-dioxane by O3/UV and O3/H2O2 was accelerated compared with the above respective methods. The amounts of 1,4-dioxane degraded per amount of ozone consumed in O3/UV and O3/H2O2 were also higher than in ozonation. The amount of 1,4-dioxane degraded in O3/UV was affected by the intensity of UV irradiation, and that in O3/H2O2 was affected by the amount of H2O2 added only in the case of a high initial concentration of 1,4-dioxane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号