共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
超宽带(UWB)无线通信技术 总被引:3,自引:0,他引:3
介绍了UWB的概念、主要技术特点,并把UWB与目前较为广泛使用的IEEE802.11、bluetooth等短距离无线通信技术进行了比较,最后对UWB的应用前景进行了分析与展望。 相似文献
3.
设计并实现了一种用于光生毫米波无线局域网的低成本千兆比特数据率的通信系统,用于满足未来光生毫米波WPAN/WLAN的需求。用户端采用单载波差分编码二相移键控调制和1bitA/D接收解调技术,有效解决了由于在毫米波波段通信信道受人和物体引起很大的衰减而需要高动态范围接收机的问题。在收发天线角度为120°、发射功率为1mW、通信距离为0.5~20m的情况下实现了1000Mbit/s的高速数据通信,动态范围大于50dB。 相似文献
4.
This paper addresses some wideband propagation characteristics for Indoor Broadband Wireless LANs at the 60 GHz band. Important system design characteristics from measured results obtained from two wideband 60 GHz LOS radio links are presented. Measurements had been undertaken using the swept frequency channel sounding method. Analysis from the complex frequency responses in a worst-case scenario have yielded to a lower coherence bandwidth value of 5 MHz. Minimum and maximum B0.9coherence bandwidths obtained with a directional horn transmit and an omnidirectional receive antenna is 1.10 MHz and 105.33 MHz respectively. It has been observed that the coherence bandwidth fluctuates significantly with the location of the receiver with respect to the base station. These results can be used for modelling and design of future Indoor BWLANs. 相似文献
5.
60 GHz宽带无线通信射频芯片研究进展 总被引:1,自引:0,他引:1
60GHz无线通信技术由于其超高速的数据传输能力,将成为第4代无线通信技术的代表,引发了学术界和工业界研究热潮。近几年,随着半导体技术的发展,基于不同工艺的60GHz宽带无线通信射频芯片已经不断有报道。文中跟踪了近些年国外60GHz无线技术研究情况,分别从应用、技术特点、标准状况和芯片研究进展等方面介绍了60GHz宽带无线通信系统及其发展趋势。 相似文献
6.
说明无线电通信使用频率的现状和开拓无线电频谱利用的必要性,介绍短距通信可用毫米波的三种典型和短距毫米波宽带传输系统的组成,并逐一叙述公路运输智能系统、室内高速无线局域网和市内无线交互性电视业务等。 相似文献
7.
超宽带无线通信技术概述 总被引:3,自引:0,他引:3
主要介绍了超宽带(UWB)无线通信技术的起源、概念及其基本工作原理,包括信号产生、系统构成、天线、接收机、调制方式等,阐述了UWB中的关键技术及性能特点,对UWB的局限性作了简要的介绍。 相似文献
8.
9.
10.
11.
12.
为了研究5G室内走廊环境的毫米波传输特性,通过射线跟踪仿真方法预测了室内走廊环境下73 GHz毫米波MIMO信道特性。介绍了实验的仿真环境和射线跟踪仿真预测的实验方法和具体参数设置。研究了室内走廊环境下73 GHz毫米波MIMO信道的路径损耗、RMS时延扩展和MIMO信道容量变化。发现了路径损耗斜率和RMS时延数值较小。研究MIMO容量随距离变化时发现,收发机沿走廊纵向方向中间处会产生容量峰值,主要是由于该处散射丰富,NLOS分量大。研究MIMO容量特性发现增大天线间距和增大天线阵列规模可以提升容量,但是采用4×64 Massive MIMO相对于采用4×4 MIMO时容量提升较为有限。实验证实了73 GHz毫米波MIMO可以用于室内走廊环境。 相似文献
13.
首先我们对超宽频技术的原理和应用做一个简单介绍,然后列举在雷达和通信方面超宽频设备和硬件的例子来描述这个领域的最新技术状况。 相似文献
14.
针对不同国家标准对5G 高频段的不同频率需求,设计了一款超宽带低噪声放大器,频率覆盖23~47GHz。采用T 型电感并联峰化技术,实现对传统电感并联峰化机构的带宽扩展,在相同功耗下,带宽可大幅提升。该放大器采用0.13 μm BiCMOS 工艺设计实现,芯片面积0.42 mm×0.85 mm。测试结果表明,该低噪放在频率23~47GHz 范围内,增益大于22 dB,S11 和S22 均小于- 7dB,噪声系数2.6~3.8 dB,输入1 dB 压缩点大于-15 dBm,在1.2 V电源电压下,芯片整体功耗仅12 mW。 相似文献
15.
针对低仰角宽带地空通信中信道多径时延较大和快速时变的特点,提出了一种多址方式新颖的星型网组网方案.其内向链路采用基于Golay互补序列的异步码分多址方式,其外向链路采用基于Walsh序列的M元扩频码分复用技术,内向链路抗多址干扰能力很强,两种链路的接收端 都因结合了滤波器组频域均衡技术(FB-FDE)因而具有很强的抗多径衰落能力,并具有频带效率高,结构简单等优点.这种多址接入方式和组网方案很适合于低仰角下宽带地空通信信道环境中的应用,其主要性能得到仿真验证,具有很好的应用前景. 相似文献
16.
随着通信产业尤其是移动通信的高速发展,无线电频谱的低端频率已趋饱和。采用各种调制方法或多址技术扩大通信系统的容量,提高频谱的利用率,也无法满足未来通信发展的需求,因而实现高速、宽带的无线通信势必向微波高频段开发新的频谱资源。毫米波由于其波长短、频带宽,可以有效地解决高速宽带无线接入面临的许多问题,因而在短距离无线通信中有着广泛的应用前景。各种半导体器件是信息和通信技术(ICT)的硬件基础,创造性研发满足毫米波无线通信应用的新兴半导体技术和电路,是提升通信系统容量、解决构建新一代通信系统关键问题的主要技术推手。文章沿着毫米波半导体器件技术创新发展脉络,从相控阵等关键技术的系统架构、半导体材料和工艺、器件设计和封装测试入手,分析总结了第五代(5G)、第六代(6G)移动通信技术毫米波系统和器件技术发展趋势。以美国DARPA的MIDAS计划为例,阐释了军用毫米波器件技术的研究前沿和进展。 相似文献
17.
18.
The evolution of satellite communication systems for the design of both the satellite’s communication payload and the ground-station
are towards the implementation of such systems using the Software Radio (SR) technology. This paper focuses on a key element
of the SR, that is, the wideband front-end which still poses the greatest technological challenge for design and proliferation
of SR. In particular, we look at the front-end architecture of wideband receivers, outline the key aspects of the design of
such front-end systems, specify the performance metrics associated with their design, present an architecture of a promising
wideband analog to digital converter, and finally present the results of our design, implementation, and test campaign of
a prototype PC-based SR system.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
19.
A Review of Wavelets for Digital Wireless Communication 总被引:1,自引:1,他引:1
Wavelets have been favorably applied in almost all aspects of digital wireless communication systems including data compression, source and channel coding, signal denoising, channel modeling and design of transceivers. The main property of wavelets in these applications is in their flexibility and ability to characterize signals accurately. In this paper recent trends and developments in the use of wavelets in wireless communications are reviewed. Major applications of wavelets in wireless channel modeling, interference mitigation, denoising, OFDM modulation, multiple access, Ultra Wideband communications, cognitive radio and wireless networks are surveyed. The confluence of information and communication technologies and the possibility of ubiquitous connectivity have posed a challenge to developing technologies and architectures capable of handling large volumes of data under severe resource constraints such as power and bandwidth. Wavelets are uniquely qualified to address this challenge. The flexibility and adaptation provided by wavelets have made wavelet technology a strong candidate for future wireless communication.
Madan Kumar Lakshmanan was born in Chennai, India, in 1979. He received the B.E. (with distinction) in electrical engineering from the University of Madras, Chennai, India, in 2000. He joined the Indian Software firm, Polaris Software Labs Ltd., in 2000 where he wrote software for Telecommunication applications. At Polaris, he was awarded the “On The Spot Of Excellence Award” for his efforts. In 2003, he moved to the Indian Institute of Technology-Madras, to develop and establish a wireless communications network for rural connectivity. In 2004, he was awarded the Royal Dutch/Shell Chevning scholarship to pursue a Master degree in Telecommunications at the Delft University of Technology (TUDelft). At TUDelft he is affiliated to the International Research Center for Telecommunications-Transmission and Radar (IRCTR) where he is undertaking research in the field of wavelets applications in Wireless Communications.
Homayoun Nikookar received his Ph.D. in Electrical Engineering from Delft University of Technology (TUDelft), The Netherlands, in 1995. From 1995 to 1998 he was a postdoc researcher at the International Research Center for Telecommunications-Transmission and Radar, TUDelft, where since 1999 he has been an Assistant Professor. Dr. Nikookar has done research on different areas of wireless communications, including wireless channel modeling, UWB, MIMO, multicarrier transmission, Wavelet-based OFDM and CDMA. He is a senior member of the IEEE. 相似文献