首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth and characterization of indium arsenide films grown on indium phosphide substrates by the metal organic chemical vapor deposition (MOCVD) process is reported. Either ethyl dimethyl indium or trimethyl indium were found to be suitable in combination with arsine as source compounds. The highest electron mobilities were observed in films nucleated at reduced growth temperature. Scanning electron microscopy studies show that film nucleation at low temperature prevents thermal etch pits from forming on the InP surface before growth proceeds at an elevated temperature. Electron mobilities as high as 21,000 cm2V−1 sec−1 at 300 K were thus obtained for a film only 3.4 μm thick. This mobility is significantly higher than was previously observed in InAs films grown by MOCVD. From the depth dependence of transport properties, we find that in our films electrons are accumulated near the air interface of the film, presumably by positive ions in the native oxide. The mobility is limited by electrons scattering predominantly from ionized impurities at low temperature and from lattice vibrations and dislocations at high temperature. However, scattering from dislocations is greatly reduced in the surface accumulation layer due to screening by a high density of electrons. These dislocations arise from lattice mismatch and interface disorder at the film-substrate interface, preventing these films from obtaining mobility values of bulk indium arsenide.  相似文献   

2.
Thin films of InAs have been deposited on mica substrates through a vacuum evaporation technique by means of controlling the substrate and source temperatures. The films with large crystal grain were found to have the best electrical properties. The maximum electron mobility of 12, 400 cm2/V·sec at room temperature was obtained in an undoped film of 3 Μm thickness at a donor concentration of 3.5 × 1016 cm−3. The temperature dependence of both electron mobility and resistivity of these films was slightly lower than those reported for bulk crystal type InAs.  相似文献   

3.
Growth pressure has a dramatic influence on the grain size, transport characteristics, optical recombination processes, and alloy composition of GaN and AlGaN films. We report on systematic studies which have been performed in a close spaced showerhead reactor and a vertical quartz tube reactor, which demonstrate increased grain size with increased growth pressure. Data suggesting the compensating nature of grain boundaries in GaN films is presented, and the impact of grain size on high mobility silicon-doped GaN and highly resistive unintentionally doped GaN films is discussed. We detail the influence of pressure on AlGaN film growth, and show how AlGaN must be grown at pressures which are lower than those used for the growth of optimized GaN films. By controlling growth pressure, we have grown high electron mobility transistor (HEMT) device structures having highly resistive (105 Ω-cm) isolation layers, room temperature sheet carrier concentrations of 1.2×1013 cm−2 and mobilities of 1500 cm2/Vs, and reduced trapping effects in fabricated devices.  相似文献   

4.
The dependence of characteristics of plasma-assisted molecular beam epitaxy-grown ZnO thin films on different postgrowth annealing conditions was investigated. It was found that, under oxygen atmosphere, annealing temperature can profoundly affect the morphological, electrical, and optical properties of ZnO thin films. In particular, the surface morphology changed from a relatively smooth surface before annealing to various island morphologies after annealing above 800°C for samples grown directly on sapphire without a buffer layer. It is speculated that intrinsic stress due to lattice mismatch drives the island formation and the high temperature provides the energy needed for this surface rearrangement. Single-field Hall-effect measurement showed that the carrier concentration improved by an order of magnitude and the mobility increased from about 30 cm2/Vs to ∼70 cm2/Vs by annealing at 750°C. Variable-field Hall effect shows that a model with two carriers, one a degenerate low-mobility electron and the other a higher mobility non-degenerate electron, is needed to explain the transport properties of the thin film. Analysis indicates that annealing at 750°C decreased the carrier concentration and increased the mobility for the high-mobility carrier. Annealing also led to a significant improvement in photoluminescence, with temperatures of ∼750–850°C yielding the best results.  相似文献   

5.
We describe the epitaxial growth of InSb films on both Si (001) and GaAs (100) substrates using molecular-beam epitaxy and discuss the structural and electrical properties of the resulting films. The complete 2 μm InSb films on GaAs (001) were grown at temperatures between 340°C and 420°C and with an Sb/In flux ratio of approximately 5 and a growth rate of 0.2 nm/s. The films were characterized in terms of background electron concentration, mobility, and x-ray rocking curve width. Our best results were for a growth temperature of 350°C, resulting in room-temperature mobility of 41,000 cm2/V s.  For the growth of InSb on Si, vicinal Si(001) substrates offcut by 4° toward (110) were used. We investigated growth temperatures between 340°C and 430°C for growth on Si(001). In contrast to growth on GaAs, the best results were achieved at the high end of the range of T S =  C, resulting in a mobility of 26,100 cm2/V s for a 2 μm film. We also studied the growth and properties of InSb:Mn films on GaAs with Mn content below 1%. Our results showed the presence of ferromagnetic ordering in the samples, opening a new direction in the diluted magnetic semiconductors.  相似文献   

6.
High quality GaxIn1−xAs, lattice matched to InP, has been reproducibly grown by organometallic vapor phase epitaxy using trimethylgallium (TMGa), trimethylindium (TMIn), and AsH3 in an atmospheric pressure reactor with no observable adduct formation. For the first time, using TMIn, room temperature electron mobilities of 104 cm2/Vs and 77 K mobilities greater than 4 × 104 cm2/Vs have beep obtained. Residual donor doping densities in the low 1015 cm−3 range have been routinely obtained. Material with excellent morphology has been grown from 540 to 670 C with the highest quality material being obtained near 650 C. The 4 K photoluminescence (PL) peak due to carbon is not seen in the material grown at higher temperatures; however, it increases dramatically as the growth temperature is lowered. This increased carbon incorporation leads to a sharp drop in the electron mobility, which exhibits a T−0.5 behavior between 77 and 300 K. With optimum growth conditions, 4 K PL halfwidths of 4–5 meV are commonly observed. This high quality material is characterized by x-ray diffraction, PL, and Hall mobility measurements. Carbon and other impurity incorporation as a function of the growth parameters will be described.  相似文献   

7.
The growth of high purity InAs by metalorganic chemical vapor deposition is reported using tertiarybutylarsine and trimethylindiμm. Specular surfaces were obtained for bulk 5-10 μm thick InAs growth on GaAs substrates over a wide range of growth conditions by using a two-step growth method involving a low temperature nucleation layer of InAs. Structural characterization was performed using atomic force microscopy and x-ray diffractometry. The transport data are complicated by a competition between bulk conduction and conduction due to a surface accumulation layer with roughly 2–4 × 1012 cm−2 carriers. This is clearly demonstrated by the temperature dependent Hall data. Average Hall mobilities as high as 1.2 x 105 cm2/Vs at 50K are observed in a 10 μm sample grown at 540°C. Field-dependent Hall measurements indicate that the fitted bulk mobility is much higher for this sample, approximately 1.8 × 105 cm2/Vs. Samples grown on InAs substrates were measured using high resolution Fourier transform photoluminescence spectroscopy and reveal new excitonic and impurity band emissions in InAs including acceptor bound exciton “two hole transitions.” Two distinct shallow acceptor species of unknown chemical identity have been observed.  相似文献   

8.
A systematic study has been performed to determine the characteristics of an optimized nucleation layer for GaN growth on sapphire. The films were grown during GaN process development in a vertical close-spaced showerhead metalorganic chemical vapor deposition reactor. The relationship between growth process parameters and the resultant properties of low temperature GaN nucleation layers and high temperature epitaxial GaN films is detailed. In particular, we discuss the combined influence of nitridation conditions, V/III ratio, temperature and pressure on optimized nucleation layer formation required to achieve reproducible high mobility GaN epitaxy in this reactor geometry. Atomic force microscopy and transmission electron microscopy have been used to study improvements in grain size and orientation of initial epitaxial film growth as a function of varied nitridation and nucleation layer process parameters. Improvements in film morphology and structure are directly related to Hall transport measurements of silicon-doped GaN films. Reproducible growth of silicon-doped GaN films having mobilities of 550 cm2/Vs with electron concentrations of 3 × 1017 cm−3, and defect densities less than 108 cm−2 is reported. These represent the best reported results to date for GaN growth using a standard two-step process in this reactor geometry.  相似文献   

9.
An effective method of dopant incorporation in rf sputtered ZnO film is reported. The electrical, optical and structural properties of zinc doped ZnO films are investigated. Electron mobility of∼10 cm2 /V-sec and electron concentration of∼1019 cm−3 have been measured at room temperature. X-ray diffraction data obtained on films prepared on Corning 7059 glass show (002) peak, dominating. The high electrical conductivity and transmission makes ZnO films very attractive as a component for heterojunction solar cells.  相似文献   

10.
In this paper we report on the low-temperature growth (Ts=30-250 °C) of zinc oxide thin films by atomic layer deposition method using two different organic zinc precursors: diethylzinc and (for comparison) dimethylzinc, and deionized water as an oxygen precursor. An evident influence of growth temperature and precursors’ doses on electron concentration and Hall mobility of obtained zinc oxide layers is presented. The lowest achieved room-temperature electron concentration was at the level of 1016 cm−3 with mobility up to 110 cm2/V s.  相似文献   

11.
The present work describes the novel, relatively simple, and efficient technique of pulsed laser deposition for rapid prototyping of thin films and multi-layer heterostructures of wide band gap semiconductors and related materials. In this method, a KrF pulsed excimer laser is used for ablation of polycrystalline, stoichiometric targets of wide band gap materials. Upon laser absorption by the target surface, a strong plasm a plume is produced which then condenses onto the substrate, kept at a suitable distance from the target surface. We have optimized the processing parameters such as laser fluence, substrate temperature, background gas pressure, target to substrate distance, and pulse repetition rate for the growth of high quality crstalline thin films and heterostructures. The films have been characterized by x-ray diffraction, Rutherford backscattering and ion channeling spectrometry, high resolution transmission electron microscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy, cathodoluminescence, and electrical transport measurements. We show that high quality AlN and GaN thin films can be grown by pulsed laser deposition at relatively lower substrate temperatures (750–800°C) than those employed in metal organic chemical vapor deposition (MOCVD), (1000–1100°C), an alternative growth method. The pulsed laser deposited GaN films (∼0.5 μm thick), grown on AlN buffered sapphire (0001), shows an x-ray diffraction rocking curve full width at half maximum (FWHM) of 5–7 arc-min. The ion channeling minimum yield in the surface region for AlN and GaN is ∼3%, indicating a high degree of crystallinity. The optical band gap for AlN and GaN is found to be 6.2 and 3.4 eV, respectively. These epitaxial films are shiny, and the surface root mean square roughness is ∼5–15 nm. The electrical resistivity of the GaN films is in the range of 10−2–102 Θ-cm with a mobility in excess of 80 cm2V−1s−1 and a carrier concentration of 1017–1019 cm−3, depending upon the buffer layers and growth conditions. We have also demonstrated the application of the pulsed laser deposition technique for integration of technologically important materials with the III–V nitrides. The examples include pulsed laser deposition of ZnO/GaN heterostructures for UV-blue lasers and epitaxial growth of TiN on GaN and SiC for low resistance ohmic contact metallization. Employing the pulsed laser, we also demonstrate a dry etching process for GaN and AlN films.  相似文献   

12.
Magnetoresistors made from n-type indium antimonide are of interest for magnetic position sensing applications. In this study, tin-doped indium antimonide was grown by the metalorganic chemical vapor deposition technique using trimethylindium, trisdimethylaminoantimony, and tetraethyltin in a hydrogen ambient. Using a growth temperature of 370°C and a pressure of 200 Torr, it was found that the electron density in tin-doped films varied from 3.3×1016 cm−3 to 4.0×1017 cm−3 as the 5/3 ratio was varied from 4.8 to 6.8. From secondary ion mass spectroscopy (SIMS) studies, it was found that this variation is not caused by a change in site occupancy of the tin atoms from antimony to indium lattice sites, but rather to a change in the total tin concentration incorporated into the films. This dependence of tin incorporation on stoichiometry could be used to rapidly vary the doping level during growth. Undoped films grown under similar conditions had electron densities of about 2×1016 cm−3 and electron mobilities near 50,000 cm2V−1s−1 at room temperature for films that were only 1.5 μm thick on a gallium arsenide substrate. Attempts to grow indium antimonide at 280°C resulted in p-type material caused by carbon incorporation. The carbon concentration as measured with SIMS increased rapidly with increasing growth rate, to above 1019 cm−3 at 0.25 μm/h. This is apparently caused by incomplete pyrolysis of a reactant at this low growth temperature. Growth at 420°C resulted in rough surface morphologies. Finally, it was demonstrated that films with excellent electron mobility and an optimized doping profile for magnetoresistors can be grown.  相似文献   

13.
Dong  H. K.  Li  N. Y.  Tu  C. W.  Geva  M.  Mitchel  W. C. 《Journal of Electronic Materials》1995,24(2):69-74
The growth of GaAs by chemical beam epitaxy using triethylgallium and trisdimethylaminoarsenic has been studied. Reflection high-energy electron diffraction (RHEED) measurements were used to investigate the growth behavior of GaAs over a wide temperature range of 300–550°C. Both group III- and group Vinduced RHEED intensity oscillations were observed, and actual V/III incorporation ratios on the substrate surface were established. Thick GaAs epitaxial layers (2–3 μm) were grown at different substrate temperatures and V/III ratios, and were characterized by the standard van der Pauw-Hall effect measurement and secondary ion mass spectroscopy analysis. The samples grown at substrate temperatures above 490°C showed n-type conduction, while those grown at substrate temperatures below 480°C showed p-type conduction. At a substrate temperature between 490 and 510°C and a V/III ratio of about 1.6, the unintentional doping concentration is n ∼2 × 1015 cm−3 with an electron mobility of 5700 cm2/V·s at 300K and 40000 cm2/V·s at 77K.  相似文献   

14.
The effects of different copper doping concentrations on the properties of SiO2 encapsulated CdSe films have been investigated. Two methods were used to dope the films with copper: ion implantation and diffusion from a surface layer. The room temperature dark resistivity of films annealed in oxygen at 450°C was found to increase as the copper concentration was increased until a maximum resistivity of 108 ohm cm occurred at a copper concentration of 1020 atoms cm−3. The room temperature resistivity in the light was found to be independent of the copper concentration and whether the films were annealed in argon or oxygen. During annealing the grains grew from 0.03 μm to 0.3 μm and this growth was independent of the doping or the annealing ambient. The energy levels, carrier mobilities, and microstructure of the annealed films were dependent on the method of doping. The ion implanted films had an additional energy level at 0.33 eV and their mobility was a factor of 4 smaller than films doped by the surface diffusion method, whose mobilities were 20 to 35 cm2V−1 s−1. The addition of chlorine to copper doped films had no effect on either the resistivity or photosensitivity but slowed the response times of the photocurrent by a factor of 10. No energy levels were observed which could be associated with the copper nor was the copper found to affect the density of the observed intrinsic levels at 0.65 and 1.1 eV.  相似文献   

15.
A time of flight technique was used to study the carrier trapping time, τ, and mobility, μ, in CdZnTe (CZT) and CdTe radiation detectors. Carriers were generated near the surface of the detector by a nitrogen-pumped pulsed dye laser with wavelength ∼500 nm. Signals from generated electrons or holes were measured by a fast oscilloscope and analyzed to determine the trapping time and mobility of carriers. Electron mobility was observed to change with temperature from 1200 cm2/Vs to 2400 cm2/Vs between 293 K and 138 K, respectively. Electron mobilities were observed between 900 cm2/Vs and 1350 cm2/Vs at room temperature for various CZT detectors. Electron mobilities in various CdTe detectors at room temperature were observed between 740 cm2/Vs and 1260 cm2/Vs. Average electron mobility was calculated to be 1120 cm2/Vs and 945 cm2/Vs for CZT and CdTe, respectively. Hole mobilities in both CZT and CdTe were found to vary between 27 cm2/Vs and 66 cm2/Vs. Electron trapping times in CZT at room temperature varied from 1.60 μs to 4.18 μs with an average value of about 2.5 μs. Electron trapping time in CdTe at room temperature varied between 1.7 μs and 4.15 μs with an average value of about 3.1 μs.  相似文献   

16.
This paper presents transport measurements on both vacancy doped and gold doped Hg0.7Cd0.3Te p-type epilayers grown by liquid phase epitaxy (LPE), with NA=2×1016 cm−3, in which a thin 2 μm surface layer has been converted to n-type by a short reactive ion etching (RIE) process. Hall and resistivity measurements were performed on the n-on-p structures in van der Pauw configuration for the temperature range from 30 K to 400 K and magnetic field range up to 12 T. The experimental Hall coefficient and resistivity data has been analyzed using the quantitative mobility spectrum analysis procedure to extract the transport properties of each individual carrier contributing to the total conduction process. In both samples three distinct carrier species have been identified. For 77 K, the individual carrier species exhibited the following properties for the vacancy and Au-doped samples, respectively, holes associated with the unconverted p-type epilayer with p ≈ 2 × 1016 cm−3, μ ≈ 350 cm2V−1s−1, and p ≈ 6 × 1015 cm−3, μ ≈ 400 cm2V−1s−1; bulk electrons associated with the RIE converted region with n ≈ 3 × 1015cm−3, μ ≈ 4 × 104 cm2V−1s−1, and n ≈ 1.5 × 1015 cm−3, μ ≈ 6 × 104 cm2V−1s−1; and surface electrons (2D concentration) n ≈ 9 × 1012 cm−2 and n ≈ 1 × 1013 cm−2, with mobility in the range 1.5 × 103 cm2V−1s−1 to 1.5 × 104 cm2V−1s−1 in both samples. The high mobility of bulk electrons in the RIE converted n-layer indicates that a diffusion process rather than damage induced conversion is responsible for the p-to-n conversion deep in the bulk. On the other hand, these results indicate that the surface electron mobility is affected by RIE induced damage in a very thin layer at the HgCdTe surface.  相似文献   

17.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

18.
Silver doped p-type Mg2Ge thin films were grown in situ at 773 K using magnetron co-sputtering from individual high-purity Mg and Ge targets. A sacrificial base layer of silver of various thicknesses from 4 nm to 20 nm was initially deposited onto the substrate to supply Ag atoms, which entered the growing Mg2Ge films by thermal diffusion. The addition of silver during film growth led to increased grain size and surface microroughness. The carrier concentration increased from 1.9 × 1018 cm−3 for undoped films to 8.8 × 1018 cm−3 for the most heavily doped films, but it did not reach saturation. Measurements in the temperature range of T = 200–650 K showed a positive Seebeck coefficient for all the films, with maximum values at temperatures between 400 K and 500 K. The highest Seebeck coefficient of the undoped film was 400 μV K−1, while it was 280 μV K−1 for the most heavily doped film at ∼400 K. The electrical conductivity increased with silver doping by a factor of approximately 10. The temperature effects on power factors for the undoped and lightly doped films were very limited, while the effects for the heavily doped films were substantial. The power factor of the heavily doped films reached a non-optimum value of ∼10−5 W cm−1 K−2 at 700 K.  相似文献   

19.
The effects of growth temperature and nitrogen plasma biasing on the electrical and structural properties of InN grown using electron cyclotron resonance metalorganic molecular beam epitaxy (ECR MOMBE) have been investigated. These results are compared to those found from InN grown using a higher energy radio frequency (rf) plasma source (rf MOMBE). By varying the bias of the nitrogen plasma or the growth temperature, it is possible to achieve smooth surface morphologies. However, biasing can also be used to increase the mobility by a factor of two while the growth temperature has only a small effect. By contrast, use of an rf plasma improves mobility by nearly a factor of ten. None of the growth conditions investigated were found to significantly alter the electron concentration, which was measured to be 1−5 × 1020 cm−3.  相似文献   

20.
A comparative study of deposition nanocrystalline silicon (nc-Si) on various buffer layers is investigated. The nc-Si films were deposited in a hot-wire chemical vapor deposition (CVD) system. Through Hall measurement, scanning electron microscopy (SEM), atomic force microscope (AFM), Raman, and x-ray diffraction (XRD) analyses, it was found that the columnar grain (CG) size, mobility, and volume fraction of crystalline-deposited nc-Si films increase with an increase of the buffer layers’ surface roughness. The nc-Si film deposited on the nc-Si buffer layer possesses the highest Xc (volume fraction of crystalline) of 84.32%, Hall mobility of 45.9 (cm2/V s), and CG size of 200–220 nm, and it shows the strongest intensity of the XRD diffraction peak in (111).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号