首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).  相似文献   

2.
The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300mg/L), particle size (0.177, 0.384, 1.651mm), pH (6.7-9.0), and temperature (30-60 degrees C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (qm) has been found to be 91.47-130.0mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions.  相似文献   

3.
This study represents new material based on chitosan modified by zeolite A as adsorbent for anionic dye, using Bezactive Orange 16 as a model compound. Interactions between dye and chitosan/zeolite A film at initial concentrations and pH dye solution was investigated. In order to determine kinetics and the mechanism of adsorption four kinetic models were used. The results showed that the adsorption of Bezactive Orange 16 dye onto chitosan/zeolite A can be best described by pseudo-second order model. According to the Langmuir model, the maximum adsorption capacity reached 305.8 mg/g. The films could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

4.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

5.
In this study dried biomass of Baker's yeast, Saccharomyces cerevisiae, is used as a sorbent for Astrazone Blue basic dye aqueous solution. Factors affecting the adsorption process: dye concentration, contact time, temperature and pH were investigated. The equilibrium concentration and the adsorption capacity at equilibrium were determined using three different sorption models namely: Langmuir, Freundlich and Temkin isotherms. It was found that increasing temperature and pH result in higher dye loadings per unit weight of the sorbent. The results gained from this study were described by Langmuir isotherm model better than Freundlich and Temkin isotherm models. The calculated heat of adsorption of the dye-yeast system indicates that the bio-sorption process is taking place by chemical adsorption and has an endothermic nature. The maximum adsorption capacity at 30 degrees C and pH 7 was calculated as 70 mg/g for dried biomass of Baker's yeast compared to 18.5mg/g for commercial granular activated carbon, indicating that dried biomass of Baker's yeast can be considered as a good sorbent material for Astrazone Blue solution.  相似文献   

6.
《Advanced Powder Technology》2020,31(5):2061-2071
Maleate-alumoxane nanoparticles (Mal-A) were synthesized from boehmite and applied for adsorption of an azo dye (Reactive Yellow 84) from aqueous solution. Its adsorption capacity was compared with three types of carboxylate alumoxane nanoparticles synthesized from boehmite including salicylate alumoxane (Sal-A), para-aminobenzoate alumoxane (Pab-A) and fumarate alumoxane (Fum-A). The characterizations of prepared materials were analyzed using FTIR, SEM, X-ray diffraction and BET measurements. Among utilized alumoxanes at natural pH, the adsorption capacity of Mal-A was 45, 67, 116 and 215% higher than that of Fum-A, Boehmite, Pab-A, Sal-A nanoparticles, respectively. Response surface methodology (RSM) using Box-Behnken design of experiment was employed to investigate the influence of pH, initial concentration of dye and adsorbent dosage on dye removal efficiency of Mal-A. Box-cox transformation was chosen to improve model adequately and a good prediction (R2: 0.998) was achieved. Under optimum condition, i.e., pH: 4.3, dye concentration: 151.5 mg/L and adsorbent dosage: 1.2 g/L, the adsorption capacity and dye removal efficiency were obtained 130.6 mg/g and 99.2%, respectively. The kinetics and equilibrium data were perfectly represented with linear pseudo-second-order and linear Langmuir isotherm models, respectively.  相似文献   

7.
Sorption of reactive dye from aqueous solution on biomass fly ash   总被引:7,自引:1,他引:7  
This study investigates the adsorption behavior of Reactive Black 5 (RB) and Reactive Yellow 176 (RY) from aqueous solution on coal fly ash (FA-CO), HCl-treated coal fly ash (TFA-HCl), and biomass fly ash (FA-BM). In preliminary study, the FA-BM showed the greatest dye adsorption capacity of both dyes, compared to FA-CO and TFA-HCl. Hence only for the FA-BM, the effects of various experiment parameters (e.g. solution pH, ionic strength, initial dye concentration, contact time) were spectrophotometrically determined. At the final pH of 8.1-8.5, the adsorption capacity of both dyes on the FA-BM was maximum and decreased above or below this pH. A positive effect of salt addition on the dye adsorption capacity was observed. The adsorption capacity of dye on the FA-BM increased with increasing C0. The equilibrium data of both dyes on the FA-BM were fitted to both Langmuir and Freundlich isotherms, but the experimental data of the RB was found to be little better fitted by the Langmuir model. The sorption data was good fit with the pseudo-second-order kinetic model. These results indicate that biomass fly ash is an interesting alternative for dye removal from the wastewater.  相似文献   

8.
In this study, the properties of gelatin and chitosan are combined in the presence of hydrolyzed poly(ethylene terphthalate), HPET, and laponite to produce a novel hybrid natural-synthetic material for anionic dyes removal applications. Adsorption studies of acid red 150 from aqueous solution with respect to the initial dye concentration, temperature, time, pH, and sorbent dosage were investigated. The Langmuir adsorption model was applied to describe the equilibrium isotherms. The prepared nanocomposites were characterized using different techniques, such as FTIR, DSC, SEM, and TEM. The suitability of the adsorbent was tested by fitting the adsorption data with Langmuir isotherm. The results showed that the adsorption of AR150 was increased with an increasing in both of the dye and chitosan concentrations.  相似文献   

9.
Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:  相似文献   

10.
Removal of chromium ions from aqueous solutions by using natural and crosslinked chitosan membranes was achieved using batch adsorption experiments. The effect of pH (6.0 and 2.0), concentration of chromium ions and crosslinking agents (glutaraldehyde: GLA and epichlorohydrin: ECH) on the adsorption properties of chitosan membranes was analyzed. The experimental equilibrium data was fitted to Langmuir and Freundlich models. Through the model curves, it was possible to observe that the amount of chromium ions adsorbed was significantly higher for crosslinked membranes compared to non-crosslinked chitosan. The maximum adsorbed amount was about 1400 mg g(-1) for ECH-crosslinked chitosan at pH 6.0. The adsorption rates for crosslinked chitosan membranes with glutaraldehyde and epichlorohydrin were similar for natural chitosan. Desorption study using NaCl (1 mol L(-1)) solution was performed on chitosan membranes, in order to recover chromium ions and to determine the suitable number of cycles for repeated use of these membranes without considerable decrease in their adsorption capacity. The desorption results showed that chromium ions could be more effectively removed at pH 2.0 than pH 6.0, mainly for ECH-crosslinked chitosan.  相似文献   

11.
Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.  相似文献   

12.
The nanoparticles of templated crosslinked chitosan, ECH-RB5 and ECH-3R, were prepared through the imprinting process using Remazol Black 5 (RB5) and Remazol Brilliant Orange 3R (3R) dyes, respectively, as templates and ECH as a crosslinker. The nanoparticles exhibited significantly higher adsorption capacities of the dyes than other nanoparticles formed without a dye template and with three crosslinkers (ECH, GLA, and EGDE). The adsorption of the dyes on the nanoparticles was affected by the initial pH, dye concentration, and temperature. The results were in accordance with the second-order and the Langmuir adsorption models. Meanwhile, the E values of the dyes calculated using the Dubinnin-Radushkevich model revealed that the adsorption process may be due to the dual nature of the process, physisorption and chemisorption, and that adsorption was predominant in the chemisorption process. The adsorption processes in the nanoparticles were spontaneous and exothermic. Moreover, competition adsorption through analysis of the intraparticle diffusion model apparently favored the 3R dye more than the RB5 dye on the nanoparticles in mixture solution B. The nanoparticles for the adsorption of the dyes were regenerated efficiently through the alkaline solution and were then reused for dye removal.  相似文献   

13.
This paper presents the adsorption of Pb(II) from aqueous solution using chitosan/TiO(2) hybrid film (CTF) adsorbent. Batch experiments were carried out as a function of solution pH, adsorption time, Pb(II) concentration and temperature. The equilibrium data fitted well with the linear Freundlich model. The adsorption process was proved to be the second grade reaction and the theoretically maximum adsorption amount at equilibrium was 36.8 mg-Pb/g. The influence parameters were optimized by response surface method (RSM), such as initial metal concentration, pH and temperature. The extreme points were gained by the Statistical Analysis System software: initial metal concentration is 50-55 mg/l, pH is 3-4 and temperature is 60 degrees C. Very high regression coefficient (R(2)=0.9689) indicates excellent evaluation of experimental data by second-order polynomial regression model. Under this condition the theoretical adsorption efficiency is 90.6%. It illuminates that this model is reliable to optimize the adsorption process and CTF is suitable for adsorbing Pb(II) from aqueous solution.  相似文献   

14.
李北罡  王敏 《材料导报》2018,32(10):1606-1611, 1622
粉煤灰(Fly ash,FA)经高温焙烧制得活化FA(Activated FA,AFA),又经溶液反应引入少量Fe和壳聚糖(Chitosan,CTS)制得Fe/CTS/AFA复合材料,将其直接用于水体中直接湖蓝5B(Direct sky blue 5B,DSB 5B)和活性翠蓝KN-G(Reactive turquoise blue KN-G,RTB KN-G)染料的吸附,通过研究影响吸附的主要因素、吸附动力学和等温吸附,并结合材料的FT-IR分析,详细探讨了材料的吸附性能。结果表明,水体酸度是影响吸附剂性能的最主要因素。当吸附剂投加量为0.1g、溶液pH值为2.0时,于25℃下吸附60min即可达吸附平衡,Fe/CTS/AFA对DSB 5B和RTB KN-G具有很强的吸附能力,吸附量分别可达635mg/g和906mg/g,比FA分别增大了31.6倍和15.3倍。吸附过程均能用准二级吸附动力学方程精确描述,等温吸附数据完全符合Langmuir模型。热力学参数吸附自由能变的负值、焓变和熵变为正值表明Fe/CTS/AFA对DSB 5B的吸附为界面上有序性降低的自发吸热过程。吸附饱和RTB KN-G的Fe/CTS/AFA可用0.01mol/L NaOH溶液再生,可至少重复使用三次。FT-IR结构分析表明Fe/CTS/AFA已成功制得,并且对高浓度染料废水具有高效净化能力。  相似文献   

15.
A magnetic nanocomposite was developed and characterized. Adsorption of crystal violet (CV) dye from water was studied using the nanocomposite. A four-factor central composite design (CCD) combined with response surface modeling (RSM) was employed for maximizing CV removal from aqueous solution by the nanocomposite based on 30 different experimental data obtained in a batch study. Four independent variables, viz. temperature (10-50°C), pH of solution (2-10), dye concentration (240-400 mg/l), and adsorbent dose (1-5 g/l) were transformed to coded values and a second-order quadratic model was built to predict the responses. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. Optimization of the process variables for maximum adsorption of CV by nanocomposite was performed using the quadratic model. The Langmuir adsorption capacity of the adsorbent was determined as 81.70 mg/g. The model predicted maximum adsorption of 113.31 mg/g under the optimum conditions of variables (concentration 240 mg/l; temperature 50°C; pH 8.50; dose 1g/l), which was very close to the experimental value (111.80 mg/g) determined in batch experiment.  相似文献   

16.
Sonochemical treatment of fly ash for dye removal from wastewater   总被引:2,自引:0,他引:2  
Fly ash samples modified by NaOH solution and sonochemical treatment were tested for a basic dye (methylene blue) adsorption in aqueous solution. It is found that sonochemical treatment of fly ash can significantly increase the adsorption capacity depending on the concentration of NaOH and treatment time. The untreated FA and the sonochemically treated sample exhibits adsorption capacity at 6 x 10(-6)mol/g and 1.2 x 10(-5)mol/g at 30 degrees C, respectively. The adsorption tests show that solution pH and adsorption temperature also influence the adsorption behaviour. The adsorption isotherms can be fitted by Langmuir and Freudlich models, while the two-site Langmuir heterogeneous model will present the best result.  相似文献   

17.
The adsorption of Direct Red 80 (DR 80) dye from aqueous solution on almond shells as an eco-friendly and low-cost adsorbent was studied. The effect of shell type (internal, external and mixture shells), pH and initial dye concentration were considered to evaluate the sorption capacity of almond shell adsorbent. The mixture type of almond shell showed to be more effective. The adsorption studies revealed that the mixture type of almond shells remove about 97% of the DR 80 dye from aqueous phase after 1h of the adsorption process in a batch system. Although, pH changes did not appreciably affect the adsorption process but the maximum adsorption capacity of different types of almond shells (20.5, 16.96 and 16.4 mg/g for mixture, external and internal shells) were obtained at pH 2. However, in order to have a better control on the experimental conditions, pH 6 was selected for conducting all adsorption experiments. Initial dye concentration was varied from 50 to 150 mg/L. Higher concentrations of dye in aqueous solution reduced DR 80 dye adsorption efficiency of almond shells. Equilibrium data were attempted by various adsorption isotherms including Langmuir, Freundlich and Brunauer-Emmett-Teller (BET) models. It was found that the adsorption process by mixture type of almond shells follows the Langmuir non-linear isotherm. Furthermore, the experimental data by internal and external almond shells could be well described by the BET and Freundlich isotherm models, respectively. The pseudo-second-order kinetics provides the best correlation of the experimental data.  相似文献   

18.
In the present study adsorption of rhodamine-B from aqueous solution on formaldehyde treated parthenium biomass (WC) and phosphoric acid treated parthenium carbon (PWC) was studied. Aqueous solutions of various concentrations (50-500 mg/l) were shaken with certain amount of adsorbent to determine the adsorption capacity of rhodamine-B on WC and PWC. The effectiveness of formaldehyde treated parthenium biomass (WC) and phosphoric acid treated parthenium carbon (PWC) in adsorbing rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dose, initial dye concentration and pH. The adsorption capacities of the studied adsorbents were in the order PWC>WC. Initial pH had negligible effect on the adsorption capacity. Maximum dye was sequestered from the solution within 60min after the start of every experiment. After that, the concentration of rhodamine-B in the liquid-phase remained constant. The adsorption of rhodamine-B onto PWC and WC followed second-order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q(0) was 59.17 mg/g at initial pH 7.0 for the particle size 0.3-1.0mm for phosphoric acid treated parthenium carbon (PWC). The FT-IR spectra of the adsorbents were recorded to explore number and position of functional groups available for the binding of dye cation onto studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents.  相似文献   

19.
The objective of this study is to remove the congo red (CR) anionic dye, from water by using the acid activated red mud in batch adsorption experiments. The effects of contact time, pH, adsorbent dosage and initial dye concentration on the adsorption were investigated. The pH of the dye solution strongly affected the chemistry of both the dye molecules and activated red mud in an aqueous solution. The effective pH was 7.0 for adsorption on activated red mud. It was found that the sufficient time to attain equilibrium was 90 min. The adsorption isotherms were analyzed using the Langmuir, the Freundlich, and the three parameter Redlich-Peterson isotherms. The Langmuir isotherm was the best-fit adsorption isotherm model for the experimental data obtained from the non-linear chi-square statistic test.  相似文献   

20.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号