首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

2.
杨楠  杨琦  刘鹏 《现代信息科技》2022,(8):45-47+52
基于GaAs增强型pHEMT工艺,设计了一款单电源供电、工作频率覆盖0.1 GHz~18 GHz单片集成宽带低噪声放大器芯片。在同一芯片上集成分布式低噪声放大器和有源偏置电路,通过有源偏置电路为分布式放大器提供栅压实现放大器单电源供电。在片测试结果表明,放大器在+5 V工作电压下,工作电流60 mA,在0.1 GHz~18 GHz工作频段范围内实现小信号增益18 dB,输出P1 dB(1 dB压缩点输出功率)典型值12 dBm,噪声系数典型值2.5 dB。放大器的芯片尺寸为2.4 mm×1.0 mm×0.07 mm。  相似文献   

3.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺研制了一款DC~70 GHz超宽带放大器单片微波集成电路(MMIC)。采用6级共源共栅结构,拓展了超宽带放大器MMIC的带宽,提高了其增益。在共源共栅PHEMT之间引入一条调谐微带线作为调谐电感,改善了超宽带放大器MMIC的增益平坦度。在片测试结果表明,该放大器MMIC在DC~70 GHz内,小信号增益大于8.3 dB,增益平坦度典型值为±1 dB,饱和输出功率大于13 dBm。在50 GHz以下噪声系数小于5 dB,在70 GHz的噪声系数为8.5 dB。该放大器MMIC的工作电压为8 V,电流为70 mA,包含射频压点与直流压点的芯片尺寸为1.39 mm×1.11 mm。  相似文献   

4.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

5.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

6.
本文基于自主研发的InP基高电子迁移率晶体管工艺设计并制作了一款W波段单级低噪声放大单片毫米波集成电路。共源共栅拓扑结构和共面波导工艺保证了该低噪声放大器紧凑的面积和高的增益,其芯片面积为900 μm×975 μm,84 GHz-100 GHz频率范围内增益大于10 dB,95 GHz处小信号增益达到最大值为15.2 dB。根据调查对比,该单级放大电路芯片具有最高的单级增益和相对高的增益面积比。另外,该放大电路芯片在87.5 GHz处噪声系数为4.3 dB,88.8 GHz处饱和输出功率为8.03 dBm。该低噪声放大器芯片的成功研制对于构建一个W波段信号接收前端具有重要的借鉴意义。  相似文献   

7.
研制了0.6~6GHz单片GaAs FET低噪声反馈放大器。在该频带内,放大器芯片具有6dB增益,4dB左右的噪声系数。在1/2I_(ds)下,获得增益8dB,1dB增益压缩点为21dBm。以目前正在研制的1~10GHz两级单片芯片为例,讨论了这种放大器的设计,该放大器还可以进行级联,获得的总增益最高为50dB左右,纹波±1.5dB。  相似文献   

8.
基于砷化镓(GaAs)赝晶型高电子迁移率晶体管(PHEMT)工艺,研制了一款25~45 GHz宽带单片微波集成电路(MMIC)低噪声放大器。该放大器采用三级级联的双电源结构,前两级在确保良好的输入回波损耗的同时优化了放大器的噪声;末级采用最大增益的匹配方式,保证了良好的增益平坦度、输出端口回波损耗以及输出功率。此外还对源电感和宽带匹配都进行了优化,实现了低噪声下的宽带输出。在片测试表明,在栅、漏偏置电压分别为-0.38 V和3 V,电流为60 mA的工作条件下,该放大器在25~45 GHz频带内噪声系数小于2 dB,增益为(22±1.5) dB,输入、输出电压驻波比典型值为2:1,1 dB增益压缩输出功率(P-1 dB)典型值为10 dBm。该低噪声放大器可以用于宽带毫米波收发系统。  相似文献   

9.
基于共源级联放大器的小信号模型,详细分析了宽带放大器的输入阻抗特性和噪声特性.利用MOS晶体管的寄生容性反馈机理,采用TSMC公司标准0.18 μm CMOS工艺设计实现了单片集成宽带低噪声放大器,芯片尺寸为0.6 mm×1.5 mm.测试结果表明,在3.1~5.2 GHz频段内,S11<-15dB,S21>12dB,S22<-12 dB,噪声系数NF<3.1dB.电源电压为1.8V,功耗为14mW.  相似文献   

10.
采用栅长为0.25μm的增强型pHEMT工艺设计并制造了一款新型达林顿放大器芯片。该达林顿放大器第二级采用了共源共栅结构,引入了负反馈,并采用了有源偏置。在0.1~6.0 GHz范围内,小信号增益大于23dB,平坦度小于±1 dB,驻波小于2,噪声系数小于1.5 dB,输出1 dB压缩点大于21 dBm,输出三阶交调截断点大于34 dBm@1.8 GHz。所设计的共源共栅达林顿放大器具有较好的带宽和一致性等优点,适用于4G、5G通信系统以及雷达收发组件等。  相似文献   

11.
设计了一种基于TSMC 0.13μm CMOS工艺,用于3.1~10.6GHz带宽的CMOS低噪声放大器。输入级采用共栅极结构,在宽频带内能较好地完成输入匹配。放大级采用共源共栅结构,为整个电路提供合适的增益。输出则采用源极输出器来进行输出匹配。使用ADS2006软件进行设计、优化和仿真。仿真结果显示,在3.1GHz~10.6GHz带宽内,放大器的电源电压在1.2V时,噪声系数低于2.5dB,增益为20.5dB,整个电路功耗为8mW。  相似文献   

12.
设计了一种基于数字修调技术的宽带高增益运算放大器,介绍了宽带高增益放大器在高速跟踪保持电路中的应用.该运算放大器采用两级放大电路-共源共基和共源共栅结构实现.基于0.35 μm BiCMOS工艺仿真验证,运放开环增益大于60 dB,单位增益带宽大于2.1 GHz,输出摆幅可达1.5 V.  相似文献   

13.
徐鑫  张波  徐辉  王毅 《微波学报》2015,31(1):83-87
采用GaAs 0.13μmp HEMT MMIC流片工艺设计和制作了一种S频段双通道低噪声放大器芯片,芯片内部集成了两个低噪声放大器通道、一级单刀双掷(SPDT)开关和一个晶体管-晶体管逻辑(TTL)电平转换电路。低噪声放大器电路采用一级共源共栅场效应管(Cascode FET)结构实现,使其具有比单管更高的增益,简化了芯片拓扑,降低了芯片设计难度。经流片测试,在1.9~2.1GHz的工作频带内,芯片噪声系数优于1.4dB,增益大于22.5dB,输入驻波优于1.8,输出驻波优于1.4,输出1dB压缩点(P1dB)为10dBm。大量芯片样本在片测试统计数据表明该低噪声放大器成品率大于90%,性能指标优于目前同类商业芯片指标。  相似文献   

14.
利用改进的小信号模型对采用100nmInAlAs/InGaAs/InP工艺设计实现的PHEMTs器件进行建模, 并设计实现了一款W波段单片低噪声放大器进行信号模型的验证。为了进一步改善信号模型低频S参数拟合差的精度, 该小信号模型考虑了栅源和栅漏二极管微分电阻, 在等效电路拓扑中分别用Rfs和Rfd表示.为了验证模型的可行性, 基于该信号模型研制了W波段低噪声放大器单片.在片测试结果表明:最大小信号增益为14.4dB@92.5GHz, 3dB带宽为25GHz@85-110GHz.而且, 该放大器也表现出了良好的噪声特性, 在88GHz处噪声系数为4.1dB, 相关增益为13.8dB.与同频段其他芯片相比, 该放大器单片具有宽3dB带宽和高的单级增益.  相似文献   

15.
用于直播卫星接收机中的12GHz频段GaAs双栅MESFET单片混频器已经研制成功。为了减小芯片尺寸,缓冲放大器直接连在混频器的中频输出端后面,而不采用中频匹配电路。混频器和缓冲器制作在各自的芯片上,以便能分别测量。混频器芯片尺寸是0.96×12.6mm,缓冲器芯片尺寸是0.96×0.60mm。用于混频器的双栅FET和用于缓冲器的单栅FET都具有间隔紧密的电极结构。栅长和栅宽分别是1μm和320μm。带有缓冲放大器的混频器在11.7~12.2GHz射频频段提供2.9±0.4dB变频增益和12.3±0.3dB单边带(SSB)噪声系数。本振频率是10.8GHz。将一个单片前置放大器、一个镜象抑制滤波器和一个单片中频放大器与混频器连接起来构成低噪声变频器。变频器在上述频段内提供46.8±1.5dB的变频增益和2.8±0.2dB单边带噪声系数。  相似文献   

16.
利用改进的小信号模型对采用100nmInAlAs/InGaAs/InP工艺设计实现的PHEMTs器件进行建模,并设计实现了一款W波段单片低噪声放大器进行信号模型的验证。为了进一步改善信号模型低频S参数拟合差的精度,该小信号模型考虑了栅源和栅漏二极管微分电阻,在等效电路拓扑中分别用Rfs和Rfd表示.为了验证模型的可行性,基于该信号模型研制了W波段低噪声放大器单片.在片测试结果表明:最大小信号增益为14.4dB@92.5GHz,3dB带宽为25GHz@85-110GHz.而且,该放大器也表现出了良好的噪声特性,在88GHz处噪声系数为4.1dB,相关增益为13.8dB.与同频段其他芯片相比,该放大器单片具有宽3dB带宽和高的单级增益.  相似文献   

17.
景一欧  李勇  赖宗声  孙玲  景为平   《电子器件》2007,30(4):1144-1147
采用0.18 μm CMOS工艺,实现了双频段低噪声放大器设计.通过射频选择开关,电路可以分别工作在无线局域网标准802.11g规定的2.4 GHz和802.11a规定的5.2 GHz频段.该低噪声放大器为共源共栅结构,设计中采用了噪声阻抗和输入阻抗同时匹配的噪声优化技术.电路仿真结果表明:在2.4 GHz频段电路线性增益为15.4 dB,噪声系数为2.3 dB,1 dB压缩点为-12.5 dBm,IIP3为-4.7 dBm;5.2 GHz频段线性增益为12.5 dB,噪声系数为2.9 dB,1 dB压缩点为-11.3 dBm,IIP3为-5.5 dBm.  相似文献   

18.
设计了一种低压、低功耗、输出阻抗匹配稳定的CMOS差分低噪声放大器.基于源极电感负反馈共源共栅结构,提出了基于MOS管中等反型区最小化Vdd·Id的方法,以优化功耗.在共栅晶体管处并联正反馈电容,以提升电路增益.对电路的噪声系数、输出阻抗稳定性、芯片面积等也进行了优化.仿真结果表明,当电源电压为1V,工作频率为5.8 GHz时,设计的低噪声放大器的噪声系数为1.53 dB,输入回波损耗为-22.4 dB,输出回波损耗为-24.6 dB,功率增益为19.2dB,直流功耗为4.6 mW.  相似文献   

19.
基于共源级联放大器的小信号模型,详细分析了宽带放大器的输入阻抗特性和噪声特性。利用MOS晶体管的寄生容性反馈机理,采用TSMC公司标准0.18μmCMOS工艺设计实现了单片集成宽带低噪声放大器,芯片尺寸为0.6mm×1.5mm。测试结果表明,在3.1~5.2GHz频段内,S11<-15dB,S21>12dB,S22<-12dB,噪声系数NF<3.1dB。电源电压为1.8V,功耗为14mW。  相似文献   

20.
采用0.5μm GaAs E-PHEMT工艺设计了一款0.5~5 GHz高增益宽带低噪声放大器芯片.该放大器采用三级共源结构,运用负反馈技术有效地进行了输入输出阻抗匹配,针对高频增益不足问题,在共栅晶体管的栅极到地之间增加栅极电容,提高了高频增益,改善了增益平坦度,拓展了带宽.同时,放大器前两级应用电流复用技术,大大降...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号