首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of multihop wireless channel on TCP performance   总被引:6,自引:0,他引:6  
This paper studies TCP performance in a stationary multihop wireless network using IEEE 802.11 for channel access control. We first show that, given a specific network topology and flow patterns, there exists an optimal window size W* at which TCP achieves the highest throughput via maximum spatial reuse of the shared wireless channel. However, TCP grows its window size much larger than W* leading to throughput reduction. We then explain the TCP throughput decrease using our observations and analysis of the packet loss in an overloaded multihop wireless network. We find out that the network overload is typically first signified by packet drops due to wireless link-layer contention, rather than buffer overflow-induced losses observed in the wired Internet. As the offered load increases, the probability of packet drops due to link contention also increases, and eventually saturates. Unfortunately the link-layer drop probability is insufficient to keep the TCP window size around W'*. We model and analyze the link contention behavior, based on which we propose link RED that fine-tunes the link-layer packet dropping probability to stabilize the TCP window size around W*. We further devise adaptive pacing to better coordinate channel access along the packet forwarding path. Our simulations demonstrate 5 to 30 percent improvement of TCP throughput using the proposed two techniques.  相似文献   

2.
The incorporation of wireless local area networks (WLANs) into existing cellular networks as supplementary access technologies has become an issue of great interest. However, vertical handover (VHO), which allows users to roam between a WLAN and a cellular network, causes an abrupt change in certain link characteristics such as the round trip time and data rate. Owing to such changes, reordering problem and premature timeout occur and trigger unnecessarily fast retransmission during VHO, causing throughput degradation. Thus, we propose a new transmission control protocol (TCP) mechanism, which resolves the reordering problem by suppressing unnecessary retransmission caused by spurious duplicate acknowledgments (dupacks) incurred because of the reordering problem, and prevents premature timeout by employing an adaptive retransmission timer. We analytically investigate the throughput of our proposed TCP scheme. The numerical and simulation results show that our proposed TCP performs better in terms of throughput than other schemes appearing in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
有线网络中TCP拥塞控制机制是建立在网络丢包的基础之上的,所以该机制不能适应无线网络中高误码率造成的无线链路丢包的情况。无线链路层重传技术是改善网络性能因无线信道误码率较高而下降的一项重要措施。文中研究了WCDMA无线网络中链路层重传技术对无线TCP数据传输的影响,比较两种重传方案,通过OPNET仿真技术对其进行仿真比较,得出其中一种更有效的改善TCP传输性能的方案。  相似文献   

4.
A number of different authors have considered the problem of performance degradation of transmission control protocol (TCP) in wireless ad hoc networks. We herein show that pauses in packet transmission due to packet losses are the fundamental cause of performance degradation of TCP in wireless ad hoc networks. To minimize the duration of packet transmission pauses, we propose a fast retransmission scheme for improving TCP performance in consideration of the inter-operability of previously deployed TCPs in wireless ad hoc networks. We also propose an additional rate control scheme for TCPs to reduce the probability of packet contention. Using OPNET and NS2 simulations, we show that our proposed schemes can provide a much better performance than conventional TCPs.  相似文献   

5.
A comparison of mechanisms for improving TCP performance overwireless links   总被引:1,自引:0,他引:1  
Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant losses due to bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to end performance in wireless and lossy systems. We compare several schemes designed to improve the performance of TCP in such networks. We classify these schemes into three broad categories: end-to-end protocols, where loss recovery is performed by the sender; link-layer protocols that provide local reliability; and split-connection protocols that break the end-to-end connection into two parts at the base station. We present the results of several experiments performed in both LAN and WAN environments, using throughput and goodput as the metrics for comparison. Our results show that a reliable link-layer protocol that is TCP-aware provides very good performance. Furthermore, it is possible to achieve good performance without splitting the end-to-end connection at the base station. We also demonstrate that selective acknowledgments and explicit loss notifications result in significant performance improvements  相似文献   

6.
Providing support for TCP with good quality link connection is a key issue for future wireless networks in which Internet access is going to be one of the most important data services. A number of schemes have been proposed in literature to improve the TCP performance over wireless links. In this paper, we study the performance of a particular combination of link layer protocol (e.g., radio link protocol or RLP) and MAC retransmissions to support the TCP connections over third generation (3G) wireless CDMA networks. We specifically investigate two metrics - the packet error rate and the delay provided by RLP and MAC retransmissions - both of which are important for TCP performance. For independent and identically distributed (i.i.d) error channels, we propose an analytical model for RLP performance with MAC retransmission. The segmentation of TCP/IP packets into smaller RLP frames, as well as the RLP buffering process, is modeled using a Markov chain. For correlated fading channels, we introduce an analytical metric called RLP retransmission efficiency. We show that: 1) the RLP frame size has significant impact on the overall 3G system performance, 2) MAC layer retransmissions significantly improve the TCP performance, and 3) the RLP retransmission scheme performs better in highly correlated channels, while other scheme performs better in low correlated channels. Simulation results also confirm these conclusions.  相似文献   

7.
This paper considers the problem of supporting TCP, the Internet data transport protocol, over a lossy wireless link whose quality varies over time. In order to prevent throughput degradation, it is necessary to “hide” the losses and the time variations of the wireless link from TCP. A number of solutions to this problem have been proposed in previous studies, but their performance was studied on a purely experimental basis. This paper presents an approximate analysis, validated by computer simulations, for TCP performance over wireless links. The analysis provides the basis for a systematic approach to supporting TCP over wireless links. The specific case of a Rayleigh-faded wireless link and automatic repeat request-based link-layer recovery is considered for the purpose of illustration. The numerical results presented for this case show that a simple solution, that of using an appropriately designed link-layer error-recovery scheme, prevents excessive deterioration of TCP throughput on wireless links  相似文献   

8.
Owing to limited bandwidth, high bit error rate, and bursty error in the wireless environment, the performance of the transmission control protocol (TCP) degrades greatly in wireless networks.Up to now, many researchers have contributed greatly to the wireless TCP field.However, in most of their works, the wireless TCP module usually works in the TCP layer and has no idea of the actual time of the packet transmission, which is determined by the Scheduler in the media access control (MAC) layer, and this will bring the inaccuracy to the local retransmission timeout and induce the redundant local retransmission.In this article, a coordinator is introduced into the base-station (BS), which can provide efficient cooperation between the TCP module and the scheduler module.On the bais of the performance analysis and simulation results, the proposed method is shown to eliminate redundant local retransmission, increase throughput, and improve TCP-level fairness in wireless networks.Moreover, this scheme is orthogonal to those existing wireless TCP schemes, thus it can give great compatibility to the current networks, and further enhance the performance of TCP under the condition that the performance improvement benefiting from the existing approaches will not be affected.  相似文献   

9.
In multi-hop wireless networks, transmission control protocol (TCP) suffers from performance deterioration due to poor wireless channel characteristics. Earlier studies have shown that the small TCP acknowledgments consume as much wireless resources as the long TCP data packets. Moreover, generating an acknowledgment (ACK) for each incoming data packet reduces the performance of TCP. The main factor affecting TCP performance in multi-hop wireless networks is the contention and collision between ACK and data packets that share the same path. Thus, lowering the number of ACKs using the delayed acknowledgment option defined in IETF RFC 1122 will improve TCP performance. However, large cumulative ACKs will induce packet loss due to retransmission time-out at the sender side of TCP. Motivated by this understanding, we propose a new TCP receiver with an adaptive delayed ACK strategy to improve TCP performance in multi-hop wireless networks. Extensive simulations have been done to prove and evaluate our strategy over different topologies. The simulation results demonstrate that our strategy can improve TCP performance significantly.  相似文献   

10.
适用于卫星网络的TCP跨层改进机制   总被引:5,自引:0,他引:5  
顾明  张军 《电子与信息学报》2008,30(8):1815-1819
该文提出基于跨层信息交互,将链路层ARQ重传状态信息通知TCP的机制,避免了链路层重传引起的时延变化对TCP的不利影响。该机制使用完全可靠选择性重传ARQ为TCP提供可靠的链路,避免卫星链路上发生丢包,并且不必要求链路层保证包按序递交,消除了重排序的等待时延,适合带宽时延积较大的卫星网络。仿真结果表明,能显著提高TCP在卫星网中的性能,特别是在误帧率较高条件下。  相似文献   

11.
Packet reordering is not pathological network behavior   总被引:2,自引:0,他引:2  
It is a widely held belief that packet reordering in the Internet is a pathological behavior, or more precisely, that it is an uncommon behavior caused by incorrect or malfunctioning network components. Some studies of Internet traffic have reported seeing occasional packet reordering events and ascribed these events to “route fluttering”, router “pauses” or simply to broken equipment. We have found, however, that parallelism in Internet components and links is causing packet reordering under normal operation and that the incidence of packet reordering appears to be substantially higher than previously reported. More importantly, we observe that in the presence of massive packet reordering transmission control protocol (TCP) performance can be profoundly effected. Perhaps the most disturbing observation about TCP's behavior is that large scale and largely random reordering on the part of the network can lead to self-reinforcingly poor performance from TCP  相似文献   

12.
Recent studies on reliable wireless multicast have focused on sending acknowledgement packets from all member stations to the source. Although these studies provide methods of improving the reliability, there have not been any studies on retransmission methods for wireless multicast. Multicast packets are retransmitted based on the unicast transmission rule, which retransmits until all members successfully receive the packet. In this paper, an efficient retransmission method is proposed. The retransmission lasts until the target packet delivery ratio of each member is met. Moreover, the contention window size for retransmission is adjusted based on the reception status of the previous transmission. The performance of the proposed wireless multicast is evaluated by extensive simulations.  相似文献   

13.
Most standard implementations of TCP perform poorly when packets are reordered. In this paper, we propose a new version of TCP that maintains high throughput when reordering occurs and yet, when packet reordering does not occur, is friendly to other versions of TCP. The proposed TCP variant, or TCP-PR, does not rely on duplicate acknowledgments to detect a packet loss. Instead, timers are maintained to keep track of how long ago a packet was transmitted. In case the corresponding acknowledgment has not yet arrived and the elapsed time since the packet was sent is larger than a given threshold, the packet is assumed lost. Because TCP-PR does not rely on duplicate acknowledgments, packet reordering (including out-or-order acknowledgments) has no effect on TCP-PR's performance. Through extensive simulations, we show that TCP-PR performs consistently better than existing mechanisms that try to make TCP more robust to packet reordering. In the case that packets are not reordered, we verify that TCP-PR maintains the same throughput as typical implementations of TCP (specifically, TCP-SACK) and shares network resources fairly. Furthermore, TCP-PR only requires changes to the TCP sender side making it easier to deploy.  相似文献   

14.
We explore the performance of reliable data communication in mobile computing environments. Motion across wireless cell boundaries causes increased delays and packet losses while the network learns how to route data to a host's new location. Reliable transport protocols like TCP interpret these delays and losses as signs of network congestion. They consequently throttle their transmissions, further degrading performance. We quantify this degradation through measurements of protocol behavior in a wireless networking testbed. We show how current TCP implementations introduce unacceptably long pauses in communication during cellular handoffs (800 ms and longer), and propose an end-to-end fast retransmission scheme that can reduce these pauses to levels more suitable for human interaction (200 ms). Our work makes clear the need for reliable transport protocols to differentiate between motion-related and congestion-related packet losses and suggests how to adapt these protocols to perform better in mobile computing environments  相似文献   

15.
This paper presents TCP-DCR, a set of simple modifications to the TCP protocol to improve its robustness to channel errors in wireless networks. TCP-DCR is based on the simple idea of allowing the link-level mechanism to recover the packets lost, due to channel errors, thereby limiting the response of the transport protocol to mostly congestion losses. This is done by delaying the triggering of congestion response algorithms for a small bounded period of time /spl tau/ to allow the link-level retransmissions to recover the loss due to channel errors. If at the end of the delay /spl tau/ the packet is not recovered, then it is treated as a packet lost due to congestion. We analyze TCP-DCR to show that the delay in congestion response does not impact the fairness towards the native implementations of TCP that respond to congestion immediately after receiving three dupacks. We evaluate TCP-DCR through simulations to show that it offers significantly better performance when channel errors contribute more towards packet losses in the network with no or minimal impact on the performance when congestion is the primary cause for packet loss. We also present an analysis to show that the number of flows in the network significantly influences protocol evaluation in the wireless networks.  相似文献   

16.
In the mobile Stream Control Transmission Protocol (mSCTP) for vertical handover, a mobile user may suffer from performance degradation due to the problems of packet reordering and retransmission timeout and due to the packet loss during handover. To solve these problems, we propose a new scheme of handover retransmission for mSCTP handover, in which the correspondent node retransmits the outstanding data packets to the mobile node over the new primary path. From simulation results, it is shown that the proposed scheme can avoid the packet reordering and retransmission timeout problems during handover. Moreover, we can see that the proposed scheme can significantly improve throughput of mSCTP handover, compared with the existing schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In recent years, a variety of mobile computers equipped with wireless communication devices have become popular. These computers use applications and protocols, originally developed for wired desktop hosts, to communicate over wireless channels. Unlike wired networks, packets transmitted on wireless channels are often subject to burst errors which cause back to back packet losses. In this paper we study the effect of burst packet errors and error recovery mechanisms employed in wireless MAC protocols on the performance of transport protocols such as TCP. Most wireless LAN link layer protocols recover from packet losses by retransmitting lost segments. When the wireless channel is in a burst error state, most retransmission attempts fail, thereby causing poor utilization of the wireless channel. Furthermore, in the event of multiple sessions sharing a wireless link, FIFO packet scheduling can cause the HOL blocking effect, resulting in unfair sharing of the bandwidth. This observation leads to a new class of packet dispatching methods which explicitly take wireless channel characteristics into consideration in making packet dispatching decisions. We compare a variety of channel state dependent packet (CSDP) scheduling methods with a view towards enhancing the performance of transport layer sessions. Our results indicate that by employing a CSDP scheduler at the wireless LAN device driver level, significant improvement in channel utilization can be achieved in typical wireless LAN configurations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Stabilizing the throughput over wireless links is one of the key challenges in providing high-quality wireless multimedia services. Wireless links are typically stabilized by a combination of link-layer automatic repeat request (ARQ) mechanisms in conjunction with forward error correction and other physical layer techniques. In this paper, we focus on the ARQ component and study a novel class of ARQ mechanisms, referred to as simultaneous MAC packet transmission (SMPT). In contrast to the conventional ARQ mechanisms that transmit one packet at a time over the wireless air interface, SMPT exploits the parallel code channels provided by multicode code-division multiple access. SMPT stabilizes the wireless link by transmitting multiple packets in parallel in response to packet drops due to wireless link errors. While these parallel packet transmissions stabilize the link layer throughput, they also increase the interference level in a given cell of a cellular network or cluster of an ad hoc network. This increased interference reduces the number of traffic flows that can be simultaneously supported in a cell/cluster. We develop an analytical framework for the class of SMPT mechanisms and analyze the link-layer buffer occupancy and the code usage in a wireless system running some form of SMPT. Our analysis quantifies the tradeoff between increased link-layer quality of service and reduced number of supported flows in SMPT with good accuracy, as verified by simulations. In a typical scenario, SMPT reduces the probability of link-layer buffer overflow by over two orders of magnitude (thus enabling high-quality multimedia services, such as real-time video streaming) while supporting roughly 20% fewer flows than conventional ARQ. Our analytical framework provides a basis for resource management in wireless systems running some form of SMPT and optimizing SMPT mechanisms.  相似文献   

19.
在无线多跳网络中,本地重传和网络编码已经被成功地应用到多路径技术上以增加吞吐量并减少丢包。然而,在提高UDP传输性能的同时,也产生了数据包重排序和延迟等副作用,严重影响了TCP性能。针对此问题,主要提出一种基于网络编码的多路径传输方案NC-MPTCP,即在无线mesh网络的多条路径中引入网络编码、执行拥塞控制以及使用一个基于信用的方法控制节点的传输速率,提高网络的吞吐量以及增加网络传输的可靠性。该方案使用一个简单的算法,评估丢包率以及发送线性组合数据包的速率,用来降低目的节点的数据包解码延迟和防止TCP的超时重传。仿真结果表明设计的NC-MPTCP有效。  相似文献   

20.
In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmission count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号