首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The purpose of this study was to quantitatively compare the hepatic contrast characteristics of conventional spin-echo (CSE) and fast spin-echo (FSE) sequences with breath-hold T2-weighted images acquired with half-Fourier turbo spin echo (HASTE). Forty-five patients were examined with a phased-array surface coil. Nineteen patients had focal hepatic lesions, including eight malignant tumors, 10 cavernous hemangiomas, and one hepatic adenoma. Twenty-six patients had no focal hepatic lesions. T2-weighted images with comparable TE were acquired with CSE, FSE, and HASTE pulse sequences. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for liver, spleen, and lesions were measured. FSE demonstrated significantly better quantitative performance than CSE for liver-spleen CNR (P .0084). No statistically significant difference was demonstrated between FSE and CSE for liver or spleen SNR. FSE demonstrated clear scan time and resolution advantages over CSE. HASTE performed significantly poorer than CSE and FSE for liver-spleen CNR (P < .0001), liver SNR (P = .0002 for CSE and P < .0001 for FSE), and spleen SNR (P < .0001). Optimized FSE images with a short echo train length performed comparably to CSE images of equivalent TE. Liver-lesion CNR was suppressed on HASTE images, suggesting that long echo train length FSE sequences could diminish solid lesion detection compared to CSE and short echo train length FSE.  相似文献   

2.
We carried out fluid-attenuated inversion recovery (FLAIR) pulse sequences with long repetition and echo times in seven children with tuberous sclerosis, and compared them with conventional spin-echo (SE) sequences. FLAIR images exhibited higher sensitivity than conventional SE images to cortical and subcortical tubers. The low signal intensity of cerebrospinal fluid on FLAIR images allowed more accurate delineation of the cortical and subcortical tubers. However, T1-weighted imaging was still superior for delineation of subependymal nodules.  相似文献   

3.
MR images of the neck were prospectively studied in 19 patients with hyperparathyroidism. Fast low angle shot (FLASH) sequence was performed in addition to T1- and T2-weighted spin echo (SE) sequences. FLASH images were obtained with 320/12/20 degrees (TR/TE/flip angle) using presaturation technique. TE of 12 ms was chosen to eliminate high signal of fat tissue. In the evaluation of detectability, a combination of T1-weighted SE and FLASH images (T1WI + FLASH) was compared with a combination of T1- and T2-weighted SE images (T1WI + T2WI). MR imaging correctly depicted 20 of 30 abnormal glands on both T1WI + FLASH and T1WI + T2WI. FLASH imaging effectively eliminated high signal of fat tissue. Nineteen abnormal glands demonstrated higher signal than surrounding tissues on FLASH images, whereas 12 glands were high-intense on T2-weighted SE images. We conclude that FLASH imaging provides improved tissue contrast and anatomic delineation and, thus, may replace T2-weighted SE imaging in the neck.  相似文献   

4.
The purpose of the present study was to investigate the clinical application of echoplanar MR imaging compared to conventional MR imaging in the detection of focal liver lesions. A total of three conventional and 12 echoplanar pulse sequences were acquired in 35 patients with focal liver lesions. Motion artifacts were eliminated because of short acquisition times of 32 ms subsequently improving signal-to-noise. A single-shot spin-echo technique with a TE of 26 ms provided the highest liver signal-to-noise ratio (p < 0.05) of all sequences acquired. Contrast-to-noise ratios for a single-shot SE technique with echo times of 50-100 ms were as high as 10-40.  相似文献   

5.
RATIONALE AND OBJECTIVES: To identify a single magnetic resonance imaging (MRI) protocol that will provide optimal signal-to-noise ratio, resolution, and image contrast with minimal susceptibility artifacts and that will allow clear delineation and visualization of cartilage, fluid, bone, tendons, and ligaments within the distal interphalangeal (DIP) joint of the human hand. METHODS: A highly optimized 2.4 T MRI system was constructed from a 31-cm horizontal bore magnet, using a solenoid radiofrequency coil. This was used to study the DIP joints of 16 healthy, asymptomatic volunteers. RESULTS: A range of image contrast protocols were explored, including spin-echo T1 and T2, field echo, chemical shift suppression to give water only images, and magnetization transfer. Susceptibility variations were explored by changing the field strength from 0.6 to 2.4 T. A spin-echo protocol with TR = 1500 msec and TE = 30 msec can routinely produce images with resolution 0.075 x 0.150 for a slice thickness of 1 mm in 13 minutes. That protocol can visualize simultaneously compact and trabecular bone, two layers of cartilage, synovial fluid, and synovium within the joint, tendons and ligaments, and the volar plate. CONCLUSIONS: Although the contrast is not fully optimized for any one tissue, the spin echo protocol (TR = 1500, TE = 30) provides sagittal MR images, which clearly delineate the major structures of interest within the DIP joint, and which will be used in future studies to compare changes in the DIP joint because of aging or osteoarthritis. Experience gained by applying the above methods to a total of 16 healthy, asymptomatic volunteers has enabled a single sequence to be identified, which although not optimized for any one tissue, nevertheless visualized simultaneously and clearly delineated compact and trabecular bone, two layers of cartilage, synovial fluid, and synovium within the joint.  相似文献   

6.
In 24 patients presenting with 55 renal lesions (mean size, 20.8 mm), single-breath-hold (SBH) fast spin-echo (FSE) techniques allowing T1 and T2 images to be produced within 20 and 23 sec, respectively, were compared with routine non-breath-hold (NBH) spin-echo (SE) T1 and NBH-FSE T2 sequences. Contrast-to-noise ratios (CNRs) measured from SBH-FSE T1 images were an average of 97% higher than their NBH counterparts (P = .0001) and allowed an improved lesion conspicuity in 80% of the cases (P = 0.0001). For T2 imaging, SBH-FSE and NBH-FSE sequences were not statistically different with respect to lesion conspicuity (P = .55) and CNR values (P = .19). This was observed despite a 35% average decrease in CNR of SBH-FSE compared to NBH-FSE images. By reducing respiratory motion artifacts while preserving SE-like image contrast, SBH-FSE techniques have the potential to replace routine NBH sequences for an optimal diagnosis of renal masses.  相似文献   

7.
Y Nakasu  R Itoh  S Nakasu  H Nioka  M Kidooka  J Handa 《Canadian Metallurgical Quarterly》1998,43(3):440-6; discussion 446-7
OBJECTIVE: The purpose of this study was to investigate the magnetic resonance features of the postoperative sella with fast spin echo (FSE) T2-weighted high-resolution imaging and to evaluate the benefits of the sequence using a follow-up magnetic resonance imaging protocol after transsphenoidal surgery. METHODS: Coronal spin echo (SE) T1-weighted and FSE T2-weighted images were prospectively obtained in 24 patients after surgery for pituitary adenomas. We observed the signals and the contour of normal structures, fluid collection, implanted materials, and mass lesions, including granulation tissue and adenoma. RESULTS: The pituitary gland was delineated in 51 of 59 FSE T2-weighted images, 90.2% of which presented clear boundaries. Whereas the gland was detected in 49 of 58 SE T1-weighted images, only 20.4% showed the boundaries. A mass lesion was identified in each of 12 patients with good resolution on FSE T2-weighted images. SE T1-weighted images detected mass lesions in 7 of 12 patients without distinctive boundaries. Contrast enhancement had little advantage in clarifying the boundaries between normal and abnormal structures. For the detection of mass lesions in the sella, the kappa values for interobserver agreement were 0.8 for FSE T2-weighted images and 0.25 for SE T1-weighted images. CONCLUSION: FSE T2-weighted imaging is a reliable method with which to assess the sella with sufficient resolution after transsphenoidal surgery. The combination of unenhanced SE T1-weighted and FSE T2-weighted images may reduce the use of contrast material after pituitary surgery.  相似文献   

8.
OBJECTIVE: Gradient-echo pulse sequences can reduce imaging time and decrease motion artifacts. If gradient-echo pulse sequences are shown to be comparable to spin-echo sequences in MR imaging of the brain, then gradient-echo imaging can be valuable for examining critically ill, anxious, or uncooperative patients and can increase patient throughput. The purpose of this study was to prospectively compare one fast multiplanar spoiled gradient-recalled acquisition in the steady state (GRASS) (FMPSPGR) sequence with one conventional T1-weighted spin-echo sequence to determine the reliability of the FMPSPGR sequence for detecting cerebral lesions. SUBJECTS AND METHODS: Fifty-one patients with 142 cranial lesions, including brain tumors, infarction, infection, and noninflammatory lesions, were examined. Forty-two unenhanced and 39 contrast-enhanced FMPSPGR (113-240/2.6-3.6/90 degrees/4 [TR/TE/flip angle/acquisitions]) and spin-echo T1-weighted (400-579/11-12/90 degrees/2) MR images of the head were obtained with a 1.5-T system. The visibility, margination, and extent of the lesions; image quality; contrast; and artifacts were qualitatively and quantitatively compared. RESULTS: Supratentorial lesions were more conspicuous on the unenhanced FMPSPGR images because of the higher signal-to-noise ratio of the normal brain resulting in higher lesion contrast. The higher contrast-to-noise ratio of neoplasms on the contrast-enhanced spin-echo images was not found to be significant in the independent qualitative analysis. The conspicuity and extent of other lesions evaluated with the two pulse sequences were not significantly different for either the unenhanced or the contrast-enhanced studies. Vascular pulsation artifacts were significantly reduced on the contrast-enhanced FMPSPGR images. Susceptibility and chemical-shift phase-cancellation artifacts were more pronounced on the FMPSPGR images. CONCLUSION: The FMPSPGR sequence provides high-quality images with fewer vascular pulsation artifacts three to four times faster than the spin-echo sequence. The FMPSPGR sequence can reliably show intracranial lesions and can substitute for the T1-weighted spin-echo sequence in routine brain imaging.  相似文献   

9.
The accuracy of water T2 maps generated from a fast spin-echo (FSE) sequence was compared with data obtained by conventional single and multi-echo spin-echo pulse sequences using a commercial gel phantom. Spatially localized stimulated echo acquisition mode (STEAM) proton spectroscopy was also used to confirm the reported water T2 values of the gels contained in the phantom. The FSE sequence was shown to be superior in accuracy to both the single and multi-echo spin echo sequences and comparable to STEAM, producing results that were within 10% of known values. The effectiveness of the FSE sequence was further demonstrated by generating T2 maps of the normal and diseased prostate in clinically acceptable imaging times, resulting in comparable T2 values to those obtained using STEAM. Accurate quantitative T2 maps can be produced with the FSE sequence.  相似文献   

10.
This study demonstrates the value of a fast fluid-attenuated inversion-recovery (FLAIR) technique in the assessment of primary intraaxial brain tumors. Twenty-one patients with primary intraaxial brain tumors were examined by T2-weighted, proton-density-weighted fast spin echo, fast FLAIR, and contrast-enhanced T1-weighted spin echo using identical slice parameters. The images were evaluated using quantitative and qualitative criteria. Quantitative criteria were tumor-to-background and tumor-to-cerebrospinal fluid (CSF) contrast and contrast-to-noise ratio (CNR). The qualitative evaluation was performed as a multireader analysis concerning lesion detection, lesion delineation, and image artifacts. In the qualitative evaluation, all readers found the fast FLAIR to be superior to fast spin echo in the exact delineation of intraaxial brain tumors (P < .001) and the delineation of enhancing and nonenhancing tumor parts. Fast FLAIR was superior in the delineation of cortically located and small lesions but was limited in lesions adjacent to the ventricles. Fast FLAIR provided a significantly better tumor-to-CSF contrast and tumor-to-CSF CNR (P < .001). The tumor-to-background contrast and tumor-to-background CNR of the fast FLAIR images were lower than those of T2-weighted spin-echo images but higher than those of proton-density-weighted spin-echo images. FLAIR images had more image artifacts influencing the image interpretation in only two patients. Signal hyperintensities at the ventricular border were present in 92% of the patients. They are common findings in fast FLAIR and should be included into the image interpretation.  相似文献   

11.
The major attraction of fast-spin-echo (FSE) imaging is reduced acquisition time; however, careful review of the literature reveals many weaknesses: phase-encoded blurring, truncation artefact, bright fat signal, reduced magnetic susceptibility and increased motion artefact. Our aim was a prospective, blinded comparison of FSE and conventional spin echo (CSE) in the cervical spine. Both sequences were performed in 43 patients (19 males and 24 females; mean age 45 years, range 15-66 years). Twenty-eight patients were studied at 1.5 T and 15 at 0.5 T. Typical sequence parameters were: at 1.5 T, TR/TE 2000/90 CSE and 3000/120 FSE, and at 0.5 T, 2200/80 CSE and 2800/120 FSE. Time saved on the FSE was used to increase the matrix and the number of acquisitions. Two neuroradiologists evaluated the images for pathology, artefacts, disc signal intensity, thecal sac compression and image quality. Ten patients had cord lesions; 2 (20 %) were missed on CSE. In 4 of 10 patients with moderate/severe thecal sac compression, the degree of stenosis was apparently exaggerated on CSE. The mean degree of confidence for the CSE sequences was 1.8 and for the FSE 1.1, where 1 is optimal. For cervical spine imaging, FSE should be preferred to CSE.  相似文献   

12.
MR T2-weighted images using multishot echo-planar imaging (EPI) and fast spin-echo (FSE) sequences were obtained in 22 patients with hepatic masses. Multishot EPI sequences included eight-shot breath-hold EPI and 16-shot EPI without breath-hold, while FSE sequences included nonfat-suppressed respiratory-triggered FSE, fat-suppressed respiratory-triggered FSE, and nonfat-suppressed breath-hold FSE. Signal-to-noise ratio, contrast-to-noise ratio and artifacts were compared between EPI and FSE images of 47 hepatic masses. In evaluating solid tumors, EPI provided image quality equal or superior to that of FSE, whereas in the evaluation of nonsolid tumors FSE showed better image quality than EPI. In conclusion, it was demonstrated that in the evaluation of hepatic solid tumors T2-weighted eight-shot breath-hold EPI can replace both nonfat-suppressed respiratory-triggered FSE and breath-hold FSE, and it was suggested that eight-shot breath-hold EPI can replace fat-suppressed respiratory-triggered FSE to reduce patient discomfort and increase examination throughput.  相似文献   

13.
Spin echo (SE) T1 axial scans are routinely obtained in magnetic resonance imaging of the lumbar spine in many centres. This study directly compared matched SE T1 and fast SE (FSE) proton density (PD) axial scans. Both SE T1 and FSE PD axial scans of the lumbar spine were obtained in 116 consecutive patients. The imaging parameters (field-of-view, slice thickness, interslice gap, number of excitations and matrix size) and scan levels were identical for each pair of sequences. At two selected levels, L4/5 and L5/S1, various structures were independently graded by two observers. In 232 lumbar levels analysed, the bone marrow, epidural fat, disc, extradural nerve root and facet joint were equally well seen on both sequences by both observers (combined mean grades of 2.93-2.99). The thecal sac was marginally better depicted on FSE PD than on SE T1 images, with mean grades of 2.96 and 2.88, respectively. The psoas muscle was adequately visualized for diagnostic purposes on both sequences (mean grades of 2.30-2.32). The cauda equina were better seen on FSE PD (mean grade 1.92) than on SE T1 (mean grade 1.00) images. In conclusion, FSE PD scans are comparable to and may potentially replace SE T1 axial MR scans of the lumbar spine.  相似文献   

14.
To compare the clinical usefulness of T2-weighted breath-hold sequences for imaging the liver, 33 patients with 97 focal hepatic lesions were studied with a 1.0-T scanner by using T2-weighted breath-hold turbo spin-echo (SE) sequences and T2-weighted breath-hold half-Fourier single-shot turbo SE (HASTE) sequences with and without fat suppression. Images were quantitatively analyzed for liver signal-to-noise ratio (SNR) and lesion-to-liver contrast-to-noise ratios (CNR). Qualitative analysis was performed for lesion conspicuity, motion artifacts, and anatomic sharpness of extrahepatic structures. Breath-hold turbo SE imaging with fat suppression showed the highest CNR for cystic lesions and the best lesion conspicuity for cystic and solid lesions among the four sequences. For solid lesions, there was no significant difference of lesion-to-liver CNR between them. HASTE sequence was superior to turbo SE sequences in terms of motion artifacts; however, the usefulness for evaluating focal hepatic lesions was limited compared with turbo SE sequence with fat suppression. Addition of fat suppression was not helpful for HASTE imaging because of decreased lesion conspicuity and extrahepatic details without the advantage of reducing motion artifacts. This study suggests that turbo SE sequence with fat suppression is most useful for breath-hold T2-weighted liver imaging at 1.0 T. Addition of imaging without fat suppression can be considered for evaluating extrahepatic structures. HASTE sequence may have a role for imaging uncooperative patients due to absence of motion artifacts.  相似文献   

15.
OBJECTIVE: Our objective was to compare the sensitivity of non-breath-hold T2-weighted fast spin-echo with and without fat suppression, breath-hold T2-weighted fast spin-echo without fat suppression, and spoiled gradient-recalled echo (GRE) MR imaging for detecting hepatic tumors using surgical findings as the standard of reference. SUBJECTS AND METHODS: Eighteen patients with 36 surgically proven hepatic tumors had non-breath-hold T2-weighted fast spin-echo (6000/117 [TR/effective TE; echo train length, 16) MR imaging with and without fat suppression, breath-hold T2-weighted fast spin-echo MR imaging (2700/105; echo train length, 20), and spoiled GRE images (10.1/1.9; flip angle, 30 degrees) obtained before and after injection of a gadolinium chelate. Images were analyzed separately by two independent readers, with disagreements resolved by consensus reading. RESULTS: Non-breath-hold T2-weighted fast spin-echo MR imaging with and without fat suppression depicted 22 (61%; 95% confidence interval [CI], 43-77%) and 20 (56%; 95% CI, 37-72%) of 36 hepatic tumors, respectively. Breath-hold T2-weighted fast spin-echo imaging allowed detection of 19 (53%; 95% CI, 35-69%) of 36 hepatic tumors. Unenhanced and gadolinium chelate-enhanced spoiled GRE images allowed depiction of 18 (50%; 95% CI, 33-67%) and 29 (81%; 95% CI, 63-91%) of 36 hepatic tumors, respectively. Gadolinium chelate-enhanced spoiled GRE images allowed depiction of significantly more hepatic tumors than any of the other pulse sequences. CONCLUSION: Gadolinium chelate-enhanced spoiled GRE imaging is more sensitive than T2-weighted MR imaging obtained with a breath-hold or a non-breath-hold technique.  相似文献   

16.
OBJECTIVE: The purposes of this study were to determine the frequency of discordant MR findings of the anterior cruciate ligament (ACL) using sagittal-oblique images and the arthroscopic integrity of the ACL in knees with a discordant MR appearance. MATERIALS AND METHODS: The frequency of discordant MR features was determined by independently reviewing the sagittal-oblique images of 53 consecutive patients undergoing subsequent arthroscopic surgery. The first 25 consecutive knees were examined using a conventional, dual-echo, T2-weighted spin-echo (SE) sequence; the subsequent 28 consecutive knees were examined using both a T1-weighted SE(T1) and a fat-suppressed, fast spin-echo (FSE) T2-weighted sequence. Two examiners who were unaware of patient identification and arthroscopic results evaluated only the sagittal images that included the ACL. Each reviewer graded the ACL as torn or intact. The MR appearance was considered discordant when one MR sequence showed disrupted or poorly seen ACL fibers and the other sequence showed intact ACL fibers. The arthroscopic integrity of the ACL was determined for the 20 knees with a discordant MR appearance. RESULTS: A discordant MR appearance of the ACL was seen in 20 of the 53 knees (38%), including 10 knees evaluated using conventional T2-weighted sequences (40%) and 10 knees using T1/FSE T2 (36%) sequences. Arthroscopic examination of these knees showed intact ACL fibers in all 20 knees; the ACL was normal in 18 knees and a partial tear was questioned in two knees. CONCLUSION: A discordant appearance of the ACL was frequently encountered (38%) using either conventional T2-weighted sequences or T1 and FSE MR sequences in the sagittal-oblique plane. Intact ACL fibers were found during arthroscopy in all 20 knees with a discordant MR appearance.  相似文献   

17.
OBJECTIVE: To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. DESIGN: MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. PATIENTS: Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. RESULTS AND CONCLUSIONS: Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P > 0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy.  相似文献   

18.
Our purpose was to analyze and compare the image quality and contrast-to-noise ratio (CNR) of different fast T1- and T2-weighted sequences with conventional spin-echo sequences in renal MRI. Twenty-three patients with focal renal lesions were examined with a T2-weighted ultrafast turbo spin-echo (UTSE) sequence with and without frequency selective fat suppression (SPIR), a combined gradient-and-spin-echo sequence (GraSE), and a conventional spin-echo sequence (SE). In addition, T1-weighted images were obtained pre- and postcontrast, using a fast spin-echo sequence (TSE) with and without SPIR and the conventional SE sequence. Among the T2-weighted images, the highest CNR and the best image quality were obtained with the UTSE sequence, followed by the fat-suppressed UTSE sequence. GraSE and conventional SE sequences showed a significantly lower CNR and image quality (p < 0.05). The T1-weighted sequences did not show significant differences, in either precontrast or postcontrast measurements. T2-weighted UTSE with and without fat suppression combined excellent image quality and high CNR for imaging and detection of renal lesions. The T1-weighted fast sequences provided no alternative to the gradient-echo or to the conventional SE sequences. The results of this systematic study suggest the use of T2-weighted fast techniques for improved diagnostic accuracy of renal MRI.  相似文献   

19.
The purpose of this study was to compare the diagnostic performance of fat-saturation fast-spin-echo (FSE) T2-weighted (T2W) sequences with conventional spin-echo (CSE) T2W sequences in the detection of rotator cuff pathology using surgery as the reference standard. Oblique coronal dual-echo CSE and FSE T2W images with fat saturation from 50 surgically confirmed MR shoulder examinations were acquired on a 1.5-T MR scanner. Blinded MR readers retrospectively analyzed each imaging sequence separately and ultimately correlated both sequences together with findings at surgery. FSE was 100% sensitive and 94% specific in detection of full-thickness tears (n = 19) and 73% sensitive and 97% specific in the detection of partial-thickness rotator cuff tears (n = 13). There was no statistically significant difference in the performance of FSE with fat saturation compared with CSE. The two discrepancies between imaging sequences related to the extent of partial-thickness tears. Our findings suggest that fat-saturation FSE imaging can effectively replace CSE imaging in the evaluation of rotator cuff pathology.  相似文献   

20.
Fat-suppressed STIR (short TI inversion recovery) sequences were compared to plain and contrast-enhanced T1-weighted SE sequences of head and neck tumors. 19 patients underwent MR imaging on a 0.5 Telsa system (T5-II, Philips). STIR imaging parameters: TR/TE = 1000/20 ms, inversion pulse 100 ms. All films were read by four radiologists. The image quality was graded: score from 0 to 5, by means that grade 5 = optimal quality. Sensitivity was 89% in STIR, 96% in SE sequences. Tumor delineation was graded good in the enhanced T1-weighted and enhanced fat suppression images. The unenhanced imaging was superior in STIR (STIR/T1 = 2.8/2.43). The tumor contrast was best in contrast enhanced and plain STIR sequences (STIR contrast = 3.41), and in the contrast enhanced T1-weighted SE (3.33). STIR almost equaled T1 post-contrast in respect of tumour conspicuity, but the sensitivity was lower. STIR can be a supplement to SE, but cannot substitute T1 postcontrast. The combined use is expected to have the highest assessment value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号