首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many factors influence the fatigue and crack growth behavior of welded joints. Some structures often undergo fairly large static loading before they enter service or variable amplitude cyclic loading when they are in service. The combined effect of both applied stress and high initial residual stress is expected to cause the residual stresses relaxation. Only a few papers seem to deal with appropriate procedures for fatigue analysis and crack growth by considering the combined effect of variable amplitude cyclic loading with residual stresses relaxation. In this article, some typical welded connections in ship-shaped structures are investigated with 3-D elastic-plastic finite element analysis. The effect of residual stress relaxation, initial residual stress, and the applied load after variable amplitude cyclic loading is revealed, and a formula for predicting the residual stress at hot spot quantitatively is proposed. Based on the formula, an improved fatigue procedure is introduced. Moreover, crack growth of typical weld joints considering residual stresses relaxation is studied.  相似文献   

2.
喷丸残余应力对裂纹闭合效应影响的数值仿真   总被引:3,自引:2,他引:1  
基于裂纹闭合效应,利用ABAQUS软件建立用于预测残余应力场中疲劳裂纹扩展特性的弹塑性有限元模型。考虑塑性和残余应力场对裂纹闭合的作用,分析残余应力、应力比和裂尖单元尺寸对裂纹闭合效应的影响。研究结果表明:未喷丸试样的裂纹闭合类型为塑性诱导裂纹闭合,喷丸残余应力场中的裂纹闭合为塑性和残余压应力共同作用,且裂纹张开力的大小与残余应力的分布相对应;正应力比越大,裂纹闭合效应越不明显,疲劳裂纹扩展速率越快;裂尖单元尺寸小于塑性区范围时可以真实反映裂尖的闭合状态;喷丸残余压应力通过提高裂纹闭合力,增强裂纹闭合效应,抑制疲劳裂纹扩展。  相似文献   

3.
王成  李开发  胡兴远  王龙 《表面技术》2021,50(9):81-90, 151
目的 探究喷丸强化残余压应力对AISI 304不锈钢疲劳裂纹扩展行为的影响规律.方法 建立并联合紧凑拉伸(CT)试样三维有限元模型和对称胞元喷丸有限元模型,发展一套多步骤数值模拟方法.首先,建立AISI 304不锈钢CT试样的三维有限元模型,模拟不同外加交变载荷工况下的疲劳裂纹扩展过程.基于线弹性断裂力学理论,利用裂纹闭合技术,计算不同裂纹长度对应的应力强度因子范围,采用修正的Paris公式计算疲劳裂纹扩展速率,并通过试验数据对计算结果进行考核.其次,建立多弹丸分层逐次冲击靶面的对称胞元喷丸有限元模型,模拟100%和200%喷丸覆盖率下的残余应力场,并通过试验数据对该对称胞元喷丸有限元模型的有效性进行验证.最后,将喷丸强化诱导的残余应力场以读写外部文件的方式导入CT试样三维有限元模型,模拟在内部残余应力场和外部交变载荷共同作用下的疲劳裂纹扩展行为.结果 对于相同的喷丸工况,保持外加载荷比不变而减小最大外加载荷,或者保持最大外加载荷不变而减小外加载荷比,喷丸强化诱导的残余压应力对疲劳裂纹扩展的抑制作用愈加显著.对于相同的外加载荷工况,200%喷丸覆盖率工况比100%喷丸覆盖率工况更能有效降低AISI 304不锈钢的疲劳裂纹扩展速率.结论 喷丸强化诱导的残余压应力场能够有效抑制AISI 304不锈钢的疲劳裂纹扩展.  相似文献   

4.
采用电弧增材制造方法制备了含增材/基材界面钛合金板,采用轮廓法测量了其残余应力分布。建立了模拟紧凑拉伸(C(T))试样加工和裂纹扩展过程中残余应力发展的有限元模型,缺口状态C(T)试样内残余应力分布与轮廓法测试结果吻合良好。采用该模型讨论了试样内残余应力随裂纹扩展的变化规律及对裂纹扩展的影响。试验和数值分析结果表明:2种类型试样缺口状态的残余应力分布有很大差别,A类试样(缺口位于基材)残余压应力区域靠近缺口根部,C类试样(缺口位于增材)残余压应力区域远离缺口根部;A类试样内残余应力随裂纹扩展迅速释放,残余应力引起的应力强度因子较小;C类试样内残余应力随裂纹扩展变化较小,残余应力引起的应力强度因子较高,降低了疲劳裂纹扩展寿命。  相似文献   

5.
Stress analysis of an induction hardened shaft subjected to cyclic torsional loading is conducted. Finite difference method is employed with the application of an Armstrong-Frederick type cyclic plasticity model. Predictions of residual stresses and their relaxation agree well with the experimental observations. Fatigue is,. analyzed using the results from the stress analysis. Three critical plane multiaxial criteria are evaluated. Due to the variation of material properties and residual stresses, failures can be initiated at surface and subsurface sites. The shear based fatigue parameters can correlate the experimentally observed fatigue lives as well as the crack initiation locations. It is noted that it is critical to consider the residual stresses and the residual stress relaxation in the fatigue life prediction for the induction hardened shafts.  相似文献   

6.
Design credit is not currently taken for laser shock processing (LSP) induced compressive residual stresses in damage tolerant design. The inclusion of these and other compressive stresses in design practice has the potential to dramatically increase predicted fatigue crack growth threshold performance and damage tolerant design life. In the current effort, Ti-6Al-4V coupons will be subjected to shot peening, glass bead peening, and high intensity laser shock processing. The in-depth residual stresses due to processing will be analyzed and then input into a linear elastic fracture mechanics analysis code to predict fatigue crack growth threshold performance. This analysis establishes both the utility and feasibility of incorporating LSP-induced compressive residual stresses into damage tolerant design practice.  相似文献   

7.
孙明如 《焊接学报》1999,20(4):264-271
对十字接头分别进行恒辐轴向载荷和变载荷历程疲劳试验,接头疲劳裂纹通常开始发生在焊缝根部,但如果接头变形引起的弯曲应力较大,疲劳裂纹也可能发生在焊缝趾部。本研究试图找出影响焊接接头疲劳寿命各参数之间的相互关系,并利用作者引伸的焊接接头疲劳裂纹起始-扩展模型较精确地预测复杂焊件的疲劳寿命。该模型把疲劳裂纹起始寿命看成是疲劳裂纹萌生,早期生成并聚合成主疲劳裂纹的循环次数,利用应变控制疲劳数据和Palmg  相似文献   

8.
The effect of peening on the fatigue crack growth performance of friction stir-welded 7075 aluminum alloy was investigated. The fatigue crack growth rates were assessed for laser- and shot-peening conditions at stress ratios (R) of 0.1 and 0.7. The surface and through thickness residual stress distributions were characterized for the different regions in the weld. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and the as-welded condition. The effect of the compressive stresses obtained through laser peening was deemed responsible for increasing the resistance to fatigue crack growth of the welds.  相似文献   

9.
陈禹锡  高玉魁 《表面技术》2019,48(6):167-172
目的 研究经喷丸强化处理后Ti2AlNb材料表层残余应力的分布特征,并预测残余应力对材料疲劳性能的影响规律。方法 通过贴应变片逐层钻孔法,对使用喷丸强化处理后的Ti2AlNb试样进行残余应力测试分析,得到引入残余应力场各方面的测试数据,结合ABAQUS数值模拟方式,对比分析试验与模拟残余应力场结果,获取材料的最终残余应力梯度。利用FE-SAFE软件,通过叠加残余应力场的方式,预测喷丸强化前后试样的疲劳寿命。结果 在文中加工参数下,实验测试和软件模拟结果的重合度良好。喷丸强化可在Ti2AlNb金属间化合物靶材内引入300 MPa左右的最大残余压应力,深度达到了0.12 mm左右。材料表面塑性应变分布不均匀,且造成的塑性应变距表面深度可达0.1 mm。通过喷丸强化引入残余压应力,预测的Ti2AlNb材料疲劳极限可提高12%,高低周疲劳寿命均有明显的延寿效果。结论 验证了有限元数值模拟此材料喷丸强化的准确性和可靠性,得到了Ti2AlNb材料喷丸强化的残余应力场。由于塑性变形诱发机制的限制,喷丸造成塑性应变分布不均匀,塑性应变层深小于残余压应力层深。此外,强化后材料的疲劳性能显著提高,疲劳极限有可观的提升,且高低周疲劳均有较好的延寿效果。  相似文献   

10.
Residual stresses prediction is definitively a relevant and open issue in welding processes. In the last years, different numerical models are proposed by many researchers to predict the residual stress field in FSW butt joint. However, most of these works are based on properly tuned analytical models and neglect the effect of the mechanical action due to the presence of the tool pin.In the present paper, a continuous 3D FE model, which was previously developed by some of the authors, was used to simulate the FSW process of butt joints with a single block approach, and predict the residual stress field by considering both thermal and mechanical actions. Then, the residual stress effect on the fatigue life was estimated through fatigue crack propagation (FCP) tests in compact tension specimens. Encouraging results were found out leading to a few interesting conclusions that have to be properly verified in the future.  相似文献   

11.
铝合金紧固孔复合强化工艺研究   总被引:1,自引:0,他引:1  
余江  姜银方  戴亚春  李路娜 《表面技术》2016,45(11):153-158
目的研究激光喷丸-冷挤压复合强化工艺对7050铝合金紧固孔疲劳源、疲劳寿命的影响。方法利用ABAQUS软件进行复合强化工艺的有限元仿真,并在强化后施加循环载荷获得残余应力数据,然后在应力水平为195 MPa、应力比为0.1的条件下进行疲劳实验,并把仿真和疲劳实验的结果与激光喷丸、冷挤压进行对比。结果复合强化工艺能同时对表面和孔壁进行强化,复合强化工艺比激光喷丸表面和孔壁的残余压应力大,循环载荷下两者残余应力的差异减小。冷挤压工艺表面全部是拉应力,循环载荷下挤出面孔角附近的残余应力由-928 MPa变为300 MPa。未处理紧固孔的疲劳源位于孔角处,激光冲击强化紧固孔的疲劳源位于中间孔壁处,冷挤压紧固孔的疲劳源位于挤出面孔角附近,复合强化紧固孔的疲劳源位于中间孔壁处,复合强化紧固孔的疲劳裂纹扩展区面积最大。未处理、激光喷丸、冷挤压、复合强化的紧固孔的疲劳寿命分别为65 918、165 117、114494、225 209。结论与未处理的紧固孔的疲劳寿命相比,激光喷丸、冷挤压、复合强化的紧固孔的疲劳寿命都有所增加,复合强化的紧固孔的疲劳寿命最大,复合强化能够进一步提高紧固孔的疲劳寿命。激光喷丸和复合强化诱导的残余压应力层能够抑制疲劳裂纹萌生于表面,而冷挤压工艺则不能。  相似文献   

12.
焊接残余应力对7N01铝合金疲劳裂纹扩展影响   总被引:1,自引:1,他引:0       下载免费PDF全文
焊接残余应力作为平均应力影响裂纹扩展. 将残余应力与外载平均应力分离,通过构建典型焊接残余应力场,借助扩展有限元计算焊接残余应力场的应力强度因子. 开展了紧凑拉伸(CT)试样的疲劳扩展试验,基于Walker公式将裂纹尖端平均应力强度因子Km(静态量)和应力强度因子幅值ΔK(动态量)分离,获得疲劳裂纹扩展速率da/dN与Km及ΔK的非线性关系. 结果表明,不同外载荷下,应力比与裂纹长度为非线性关系;残余应力对裂纹扩展存在尺度效应:CT试样裂纹长度小于2 mm时,残余应力场明显影响疲劳裂纹扩展速率;当裂纹长度大于2 mm,外载荷为主导因素.  相似文献   

13.
In this work, the results of an experimental study for assessing the effects of Ultrasonic Impact Treatment on the fatigue resistance of Friction Stir Welded aluminum alloy panels are presented. Although the significant compressive residual stress introduced on the material by ultrasonic impact treatment (UIT) was expected to cause retardation in the crack growth rate, this was only noted at low initial ΔΚ values. At high ΔΚ values, the effect of UIT practically diminishes. The phenomenon was attributed to the relaxation/redistribution of the residual stresses with fatigue damage. This provides an alarming situation where damage tolerance design relies on models where only the initial residual stress profile is taken into account without knowledge of the potential re-distribution of the residual stresses caused by the fatigue damage accumulation. The findings of this work also indicate that any FCG tests performed can only be considered as case-specific and conclusions can only be drawn for the case studied.  相似文献   

14.
Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.  相似文献   

15.
Compact test specimens were extracted from a 6061-T6 aluminum alloy welded plate with a thickness of 9 mm to analyze the cold hole expansion effect on fatigue crack growth tests conducted in mode I cyclic loading. At R = 0.1, a sharp crack in base metal, weld metal and heat affected zone was propagated from 17 to 24 mm. The fatigue crack growth at 24 mm (α = a/W = 0.3) was delayed by drilling a hole at the crack tip and applying a cold hole expansion of 4.1%. The residual stress fields due to cold hole expansion were determined with the finite element method. The fatigue crack growth testing was continued up to a crack length of 35 mm (α ∼ 0.43) at the same R, and crack opening displacements of the post-expansion crack were also determined with the finite element method. The results were expressed in terms of crack length versus number of cycles, as well as, fatigue crack growth rate as a function of applied and effective stress intensity factor range. The cold hole expansion contributed to delay the fatigue crack growth in base metal, and to a lesser extent in the weld metal and heat affected zone. A crack closure effect was determined by means of load versus crack opening displacement curves of the post-expansion crack, which was, completely or partially closed, in welded zones with compressive residual stress fields. The fracture surfaces of each welded zone were analyzed to elucidate the crack nucleation zone and its relation with the residual stress field. In all cases the crack was initiated at the surface of the specimen where the residual stresses were positive.  相似文献   

16.
残余应力和表面形态对60Mn疲劳性能的影响   总被引:1,自引:0,他引:1  
喷丸产生的表层残余压应力使中温回火弹簧钢60Mn的疲劳极限从930提高到1010MPa,而心部的高残余拉应力又会使疲劳极限从1010降至940MPa,严重的喷丸表面损伤可以使疲劳极限从1010降至800MPa。裂纹在计入残余应力的Mises等效应力超过材料局部强度的部位萌生。喷丸产生的残余压应力可以增强裂纹闭合效应,从而降低裂纹扩展率。  相似文献   

17.
喷丸强化因素对Ti合金微动疲劳抗力的作用   总被引:8,自引:0,他引:8  
刘道新  何家文 《金属学报》2001,37(2):156-160
探讨了喷丸强化(SP)三因素(残余压应力引入,表面粗糙度增大和表面加工硬化)在改善Ti合金微动疲劳(FF)性能中的作用规律和机制。结果表明,SP引入表层残余应力和导致粗糙度增大对提高Ti合金FF抗力起重要作用。前者的作用大于后者,且二者之间存在协同作用效应,即SP表面因粗糙度增大而减缓了表层残余应力的SP引入的表面残余应力主要通过增加裂纹闭合力,抑制FF裂纹早期扩展来提高FF抗力。在表面应力集中严重的接触几何条件下,裂纹扩展控制FF过程,此时SP层残余应力的作用更加显著。  相似文献   

18.
《Acta Materialia》2001,49(9):1633-1646
Low-cycle fatigue failure in titanium metal matrix composites is caused by two separate damage mechanisms: fatigue crack growth in the Ti matrix and fiber breakage. Here, a coupled numerical model for predicting both crack growth and fiber breakage is developed and applied to predict low-cycle fatigue lives in a SiC-fiber reinforced Ti matrix composite. A three-dimensional finite element model containing a matrix crack, nucleated on the first loading cycle in the reaction layer around a fiber, that is bridged by SiC fibers is used to calculate both the matrix crack tip stress intensity factor and the local fiber stress concentrations due to the matrix crack, as a function of the crack size. The crack tip stress intensity factor is used in a Paris-law model for the growth rate of the matrix crack. The local stress distributions in the fibers are used as the effective “applied” load within a three-dimensional Greens Function method that simulates the fiber damage process at any fixed fatigue crack size. Fiber failure preferentially occurs within the matrix crack region, where the fiber stresses are comparatively high, and composite failure occurs when the damage in this region is sufficient to drive fiber failure throughout the remainder of the composite in a crack-like fracture mode. A fatigue life threshold is predicted at about 80% of the quasistatic tensile strength, where the fiber bundle can survive even with a matrix crack extending throughout the entire cross-section. Predictions for the low-cycle fatigue of Ti-matrix (IMI834) reinforced with SCS-6 SiC fibers compare well with available experimental data at high stresses using pristine fiber strengths and no adjustable parameters. Using literature values for the fatigued fiber strength beyond 104 cycles and no adjustable parameters, the experimental data are also well matched at lower stresses. The model demonstrates that fatigue life can be dependent on actual composite size and can be very sensitive to initial fiber damage.  相似文献   

19.
焊接残余应力对2024铝合金薄板疲劳寿命的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
张正伟  张昭  张洪武 《焊接学报》2014,35(10):29-32,36
对搅拌磨擦焊、TIG焊和激光焊进行数值模拟,得到焊接残余应力场.将残余应力场施加到线弹性断裂力学模型之中,运用J积分方法计算残余应力强度因子,并计算裂纹扩展速率,通过与试验结果和虚拟裂纹闭合法计算结果进行对比,验证了文中所使用方法的正确性.研究发现,残余应力强度因子的分布与残余应力分布形式相似.残余应力的引入,对应力比有较大影响,但随着应力比的增大,残余应力对应力比的影响逐渐减弱.焊接残余应力的引入缩短了焊接构件的使用寿命,当裂纹长度较小时,TIG焊接构件使用寿命比搅拌摩擦焊接构件和激光焊接构件使用寿命短.  相似文献   

20.
Influence of residual stress and surface morphology induced by shot-peening on fatigue behav-ior of a medium temperature tempered spring steel 60 Mn has been studied.The compressiveresidual stress induced in the near-surface region may improve fatigue limit from 930 to 1010MPa,and the very high tensile residual stress in the interior may reduce it from 1010 to 940MPa,whereas the severe surface damage may cause a drop-off of it from 1010 down to 800MPa.Fatigue cracks initiated in such position where the equivalent Mises stress,includingresidual stress,exceeded the local strength of the material.The compressive residual stress,induced by shot-peening,may intensify the effect of crack closure,so as to decrease the crackgrowth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号