首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, good thermal stability up to an annealing temperature of 1000degC has been demonstrated for a new TiN/Al2O3/WN/TiN capacitor structure. Good electrical performance has been achieved for the proposed layer structure, including a high dielectric constant of ~ 10, low leakage current of 1.2times10-7 A/cm2 at 1 V, and excellent reliability. A thin WN layer was incorporated into the metal-insulator-metal capacitor between the bottom TiN electrode and the Al2O3 dielectric suppressing of interfacial-layer formation at Al2 O3/TiN interfaces and resulting in a smoother Al2O3/TiN interface. This new layer structure is very attractive for deep-trench capacitor applications in DRAM technologies beyond 50 nm.  相似文献   

2.
We report a novel 1000 degC stable HfLaON p-MOSFET with Ir3 Si gate. Low leakage current of 1.8times10-5 A/cm2 at 1 V above flat-band voltage, good effective work function of 5.08 eV, and high mobility of 84 cm2/Vmiddots are simultaneously obtained at 1.6 nm equivalent oxide thickness. This gate-first p-MOSFET process with self-aligned ion implant and 1000 degC rapid thermal annealing is fully compatible to current very large scale integration fabrication lines  相似文献   

3.
We report Ir/TiO2/TaN metal-insulator-metal capacitors processed at only 300degC, which show a capacitance density of 28 fF/mum2 and a leakage current of 3 times 10-8 (25degC) or 6 times 10-7 (125degC) A/cm2 at -1 V. This performance is due to the combined effects of 300degC nanocrystallized high-kappa TiO2, a high conduction band offset, and high work-function upper electrode. These devices show potential for integration in future very-large-scale-integration technologies.  相似文献   

4.
In this letter, a novel integration scheme, for metal-insulator-metal capacitors comprising perovskite-type dielectrics and Cu-based bottom electrodes, has been demonstrated on low-temperature FR4 packaging substrates. Cu oxidation during dielectric deposition and postannealing is completely avoided by a dielectric-first process flow with Ti as oxygen-getter. By using evaporated barium strontium titanate as capacitor dielectric, a maximum capacitance density (~1250 nF/cm2 at 100 kHz) and moderate leakage current (< 4 times 10-5 A/cm2 at 2 V) have been achieved with rapid thermal annealing at 700degC. Higher temperature leads to dielectric degradation. Combined with advanced deposition techniques, this integration scheme enables realization of high-performance embedded capacitors that can be integrated with printed circuit board technology.  相似文献   

5.
We have integrated a high-kappa HfLaO dielectric into pentacene-based organic thin-film transistors. We measured good device performance, such as a low subthreshold swing of 0.078 V/dec, a threshold voltage of -1.3 V, and a field-effect mobility of 0.71cm2/ Vldrs . This occurred along with an ON-OFF state drive current ratio of 1.0 times 105, when the devices were operated at only 2 V. The performance is due to the high gate-capacitance density of 950 nF/cm2 that is given by the HfLaO dielectric, which is achieved at an equivalent oxide thickness of only 3.6 nm with a low leakage current of 5.1 times 10-7 at 2 V.  相似文献   

6.
High-performance inversion-type enhancement-mode n-channel In0.53Ga0.47As MOSFETs with atomic-layer-deposited (ALD) Al2O3 as gate dielectric are demonstrated. The ALD process on III-V compound semiconductors enables the formation of high-quality gate oxides and unpinning of Fermi level on compound semiconductors in general. A 0.5-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 8 nm shows a gate leakage current less than 10-4 A/cm2 at 3-V gate bias, a threshold voltage of 0.25 V, a maximum drain current of 367 mA/mm, and a transconductance of 130 mS/mm at drain voltage of 2 V. The midgap interface trap density of regrown Al2O3 on In0.53Ga0.47As is ~1.4 x 1012/cm2 ldr eV which is determined by low-and high-frequency capacitance-voltage method. The peak effective mobility is ~1100 cm2 / V ldr s from dc measurement, ~2200 cm2/ V ldr s after interface trap correction, and with about a factor of two to three higher than Si universal mobility in the range of 0.5-1.0-MV/cm effective electric field.  相似文献   

7.
叶伟  崔立堃  常红梅 《电子学报》2019,47(6):1344-1351
具有高介电常数的栅绝缘层材料存在某种极化及耦合作用,使得ZnO-TFTs具有高的界面费米能级钉扎效应、大的电容耦合效应和低的载流子迁移率.为了解决这些问题,本文提出了一种使用SiO2修饰的Bi1.5Zn1.0Nb1.5O7作为栅绝缘层的ZnO-TFTs结构,分析了SiO2修饰对栅绝缘层和ZnO-TFTs性能的影响.结果表明,使用SiO2修饰后,栅绝缘层和ZnO-TFTs的性能得到显著提高,使得ZnO-TFTs在下一代显示领域中具有非常广泛的应用前景.栅绝缘层的漏电流密度从4.5×10-5A/cm2降低到7.7×10-7A/cm2,粗糙度从4.52nm降低到3.74nm,ZnO-TFTs的亚阈值摆幅从10V/dec降低到2.81V/dec,界面态密度从8×1013cm-2降低到9×1012cm-2,迁移率从0.001cm2/(V·s)升高到0.159cm2/(V·s).  相似文献   

8.
We have fabricated high-kappa TaN/Ir/TiLaO/TaN metal-insulator-metal capacitors. A low leakage current of 6.6 times 10-7 A/cm2 was obtained at 125degC for 24-fF/mum2 density capacitors. The excellent device performance is due to the combined effects of the high-kappa TiLaO dielectric, a high work-function Ir electrode, and large conduction band offset.  相似文献   

9.
High-performance inversion-type enhancement- mode (E-mode) n-channel In0.65Ga0.35As MOSFETs with atomic-layer-deposited Al2O3 as gate dielectric are demonstrated. A 0.4-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 10 nm shows a gate leakage current that is less than 5 times 10-6 A/cm2 at 4.0-V gate bias, a threshold voltage of 0.4 V, a maximum drain current of 1.05 A/mm, and a transconductance of 350 mS/mm at drain voltage of 2.0 V. The maximum drain current and transconductance scale linearly from 40 mum to 0.7 mum. The peak effective mobility is ~1550 cm2/V ldr s at 0.3 MV/cm and decreases to ~650 cm2/V ldr s at 0.9 MV/cm. The obtained maximum drain current and transconductance are all record-high values in 40 years of E-mode III-V MOSFET research.  相似文献   

10.
The dielectric properties of the amorphous BaSm2Ti4O12 (BSmT) film with various thicknesses were investigated to evaluate its potential use as a metal-insulator-metal (MIM) capacitor. An amorphous 35-nm-thick BSmT film grown at 300 degC exhibited a high capacitance density of 9.9 fF/mum2 at 100 kHz and a low leakage current density of 1.790 nA/cm2 at 1 V. The quadratic and linear voltage coefficients of capacitance of the film were 599 ppm/V2 and -81 ppm/V at 100 kHz, respectively. The temperature coefficient of capacitance of the film was also low about 236 ppm/degC at 100 kHz. These results confirmed the suitability of the amorphous BSmT film as a high-performance MIM capacitor  相似文献   

11.
Ultra-shallow p+/n and n+/p junctions were fabricated using a Silicide-As-Diffusion-Source (SADS) process and a low thermal budget (800-900°C). A thin layer (50 nm) of CoSi2 was implanted with As or with BF2 and subsequently annealed at different temperatures and times to form two ultra-shallow junctions with a distance between the silicide/silicon interface and the junction of 14 and 20 nm, respectively. These diodes were investigated by I-V and C-V measurements in the range of temperature between 80 and 500 K. The reverse leakage currents for the SADS diodes were as low as 9×10 -10 A/cm2 for p+/n and 2.7×10-9 A/cm2 for n+/p, respectively. The temperature dependence of the reverse current in the p +/n diode is characterized by a unique activation energy (1.1 eV) over all the investigated range, while in the n+/p diode an activation energy of about 0.42 eV is obtained at 330 K. The analysis of the forward characteristic of the diodes indicate that the p+ /n junctions have an ideal behavior, while the n+/p junctions have an ideality factor greater than one for all the temperature range of the measurements. TEM delineation results confirm that, in the case of As diffusion from CoSi2, the junction depth is not uniform and in some regions a Schottky diode is observed in parallel to the n+/p junction. Finally, from the C-V measurements, an increase of the diodes area of about a factor two is measured, and it is associated with the silicide/silicon interface roughness  相似文献   

12.
Electrical characteristics of Al/yttrium oxide (~260 Å)/silicon dioxide (~40 Å)/Si and Al/yttrium oxide (~260 Å)/Si structures are described. The Al/Y2O3/SiO2/Si (MYOS) and Al/Y2 O3/Si (MYS) capacitors show very well-behaved I-V characteristics with leakage current density <10-10 A/cm2 at 5 V. High-frequency C- V and quasistatic C-V characteristics show very little hysteresis for bias ramp rate ranging from 10 to 100 mV/s. The average interface charge density (Qf+Q it) is ~6×1011/cm2 and interface state density Dit is ~1011 cm-2-eV-1 near the middle of the bandgap of silicon. The accumulation capacitance of this dielectric does not show an appreciable frequency dependence for frequencies varying from 10 kHz to 10 MHz. These electrical characteristics and dielectric constant of ~17-20 for yttrium oxide on SiO2/Si make it a variable dielectric for DRAM storage capacitors and for decoupling capacitors for on-chip and off-chip applications  相似文献   

13.
Using low-cost and high work-function Ni, a low leakage current of 5times10-6 A/cm2 at 125 degC is obtained in a high 25-fF/mum2-density SrTiO3 metal-insulator-metal (MIM) capacitor processed at 400 degC. This is approximately two orders of magnitude better than the same device using a TaN electrode, with added advantages of improved voltage and temperature coefficients of capacitance. This work-function tuning method also has merit for achieving both low thermal leakage and high overall kappa value beyond previous laminate structure  相似文献   

14.
Bandgap-engineered W/Si1-xGex/Si junctions (p+ and n+) with ultra-low contact resistivity and low leakage have been fabricated and characterized. The junctions are formed via outdiffusion from a selectively deposited Si0.7Ge 0.3 layer which is implanted and annealed using RTA. The Si 1-xGex layer can then be selectively thinned using NH4OH/H2O2/H2O at 75°C with little change in characteristics or left as-deposited. Leakage currents were better than 1.6×10-9 A/cm2 (areal), 7.45×10-12 A/cm (peripheral) for p+/n and 3.5×10-10 A/cm2 (peripheral) for n+/p. W contacts were formed using selective LPCVD on Si1-xGex. A specific contact resistivity of better than 3.2×10-8 Ω cm2 for p +/n and 2.2×10-8 Ω cm2 for n+/p is demonstrated-an order of magnitude n+ better than current TiSi2 technology. W/Si1-xGe x/Si junctions show great potential for ULSI applications  相似文献   

15.
We demonstrate, for the first time, the application of dopant-segregation (DS) technique in metal-germanium- metal photodetectors for dark-current suppression and high-speed performance. Low defect density and surface smooth epi-Ge (~300 nm) layer was selectively grown on patterned Si substrate using two-step epi-growth at 400degC/600degC combined with a thin (~10 nm) low-temperature Si/Si0.8 Ge0.2 buffer layer. NiGe with DS effectively modulates the Schottky barrier height and suppresses dark current to ~10 -7 A at -1 V bias (width/spacing: 30/2.5 mum). Under normal incidence illumination at 1.55 mum, the devices show photoresponsivity of 0.12 A/W. The 3 dB bandwidth under - 1 V bias is up to 6 GHz.  相似文献   

16.
Oxide-confined 850 nm vertical-cavity surface-emitting lasers operating at 40 Gbit/s at current densities ~10 kA/cm2 are realised. The deconvoluted rise time of the device is below 10 ps and remains hardly temperature sensitive up to 100degC.  相似文献   

17.
MOSFETs incorporating ZrO2 gate dielectrics were fabricated. The IDS-VDS, IDS-VGS , and gated diode characteristics were analyzed to investigate the ZrO2/Si interface properties. The interface trap density (D it) was determined to be about 7.4times1012 cm -2middoteV-1 using subthreshold swing measurement. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (tau 0,FIJ) measured from the gated diodes were about 3.5times10 3 cm/s and 2.6times10-6 s, respectively. The effective capture cross section of surface state (sigmas) was determined to be about 5.8times10-16 cm2 using the gated diode technique and the subthreshold swing measurement. A comparison with conventional MOSFETs using SiO2 gate oxides was also made  相似文献   

18.
A silicon-based optoelectronic device that exhibits an enhanced response to subbandgap light is described. The device structure consists of a bifacial silicon solar cell with an up- converting (UC) layer attached to the rear. Erbium-doped sodium yttrium fluoride (NaY0.8F4 : Er0.2 3+) phosphors are the optically active centers responsible for the UC luminescence. The unoptimized device is demonstrated to respond effectively to wavelengths (lambda) in the range of 1480-1580 nm with an external quantum efficiency (EQE) of 3.4% occurring at 1523 nm at an illumination intensity of 2.4 W/cm2 (EQE = 1.4 times 10-2 cm2/W). An analysis of the optical losses reveals that the luminescence quantum efficiency (LQE) of the device is 16.7% at 2.4 W/cm2 of 1523-nm excitation (LQE = 7.0 times 10-2 cm2/W), while further potential device improvements indicate that an EQE of 14.0% (5.8 times 10-2 cm2/W) could be realistically achieved.  相似文献   

19.
To investigate the physical mechanism of the saturation process in Cr4+:YAG crystals we solved the three coupled rate equations which describe the saturable absorber. We experimentally verified this model using two lasers with nanosecond pulses and continuous-wave radiation. We used crystalline and ceramic Cr4+-doped YAG saturable absorbers with various initial transmissions. The ratio between the ground and the excited-state absorption cross section at 1064 nm was measured to be between 3.8 plusmn 0.2 and 4.7 plusmn 0.2 for crystalline and 3.6 plusmn 0.1 for ceramic Cr4+:YAG. The ratio between the above named cross sections at 1047 nm was found to be 6.2 plusmn 0.2 for both crystalline and ceramic Cr4+:YAG. With these results the ground-state and the excited-state absorption cross sections at 1047 nm were calculated to be (9.55plusmn0.01)times10-19 cm2 and (1.54plusmn0.03)times10-19 cm2, respectively  相似文献   

20.
The fabrication of planar optical waveguides in LiB3O 5 is discussed. Using 2-MeV 4He+ implantation with a dose of 1.5×1016 ions/cm2 at 300 K, the refractive indexes of a 0.2-μm-thick layer 5.1 μm below the crystal surface are reduced to form optical barrier guides. For this ion dose the maximum change from the bulk values of refractive index at a wavelength of 0.488 μm are 1.5%, 5.25%, and 4% for nx, ny, and nz, respectively. The refractive indexes of the guiding region change by less than 0.02% from the bulk values. The dose dependence of the optical barrier height has been measured. A threshold ion dose of about 0.75×1016 ions/cm2 is required to form a refractive index barrier and ion doses higher than about 2.5×1016 ions/cm2. saturate the refractive index decrease. Waveguide propagation losses for annealed single energy implants of dose 1.5×1016 ions/cm2 are dominated by tunneling and are estimated to be ~8.9 dB/cm for the z-cut waveguides used. Multiple energy implants broaden the optical barrier, and losses of <4 dB/cm have been observed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号