首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction of the xylose pathway from Pichia stipitis into Saccharomyces cerevisiae enables xylose utilization in recombinant S. cerevisiae. However, xylitol is a major by-product. An endogenous aldo-keto reductase, encoded by the GRE3 gene, was expressed at different levels in recombinant S. cerevisiae strains to investigate its effect on xylose utilization. In a recombinant S. cerevisiae strain producing only xylitol dehydrogenase (XDH) from P. stipitis and an extra copy of the endogenous xylulokinase (XK), ethanol formation from xylose was mediated by Gre3p, capable of reducing xylose to xylitol. When the GRE3 gene was overexpressed in this strain, the xylose consumption and ethanol formation increased by 29% and 116%, respectively. When the GRE3 gene was deleted in the recombinant xylose-fermenting S. cerevisiae strain TMB3001 (which possesses xylose reductase and XDH from P. stipitis, and an extra copy of endogenous XK), the xylitol yield decreased by 49% and the ethanol yield increased by 19% in anaerobic continuous culture with a glucose/xylose mixture. Biomass was reduced by 31% in strains where GRE3 was deleted, suggesting that fine-tuning of GRE3 expression is the preferred choice rather than deletion.  相似文献   

2.
We constructed a set of recombinant Saccharomyces cerevisiae strains with xylose-fermenting ability. A recombinant S. cerevisiae strain D-XR/ARSdR/XK, in which protein engineered NADP(+)-dependent XDH was expressed, showed 40% increased ethanol production and 23% decrease in xylitol excretion as compared with the reference strain D-XR/XDH/XK expressing the wild-type XDH.  相似文献   

3.
A Saccharomyces cerevisiae screening strain was designed by combining multiple genetic modifications known to improve xylose utilization with the primary objective of enhancing xylose growth and fermentation in xylose isomerase (XI)-expressing strains. Strain TMB 3045 was obtained by expressing the XI gene from Thermus thermophilus in a strain in which the GRE3 gene coding for aldose reductase was deleted, and the genes encoding xylulokinase (XK) and the enzymes of the non-oxidative pentose phosphate pathway (PPP) [transaldolase (TAL), transketolase (TKL), ribose 5-phosphate ketol-isomerase (RKI) and ribulose 5-phosphate epimerase (RPE)] were overexpressed. A xylose-growing and fermenting strain (TMB 3050) was derived from TMB 3045 by repeated cultivation on xylose medium. Despite its low XI activity, TMB 3050 was capable of aerobic xylose growth and anaerobic ethanol production at 30 degrees C. The aerobic xylose growth rate reached 0.17 l/h when XI was replaced with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes expressed from a multicopy plasmid, demonstrating that the screening system was functional. Xylose growth had not previously been detected in strains in which the PPP genes were not overexpressed or when overexpressing the PPP genes but having XR and XDH genes chromosomally integrated. This demonstrates the necessity to simultaneously increase the conversion of xylose to xylulose and the metabolic steps downstream of xylulose for efficient xylose utilization in S. cerevisiae.  相似文献   

4.
Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR-XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose-6-P for xylose assimilation. The requirement for generating glucose-6-P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose-6-P. Thus, natural xylose-assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose-6-P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH-depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose-6-P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose.  相似文献   

5.
以酵母AS2.1190为出发菌株,把含有木糖还原酶基因(XYL1)、木糖醇脱氢酶基因(XYL2)以及木酮糖激酶基因(XKS1)的质粒载体pYMIKP-xy127线性化后多拷贝整合进入其基因组,筛选得到基因工程菌株GZ4-127,并对此工程菌株进行葡萄糖、木糖共发酵试验.结果显示GZ4-127比出发菌株的菌体密度提高5%,木糖消耗提高2倍,酒精产率提高12%,说明工程菌已能够有效地利用木糖生产乙醇.  相似文献   

6.
Efficient L-lactic acid production from xylose was achieved using a pyruvate decarboxylase-deficient Candida utilis strain expressing an L-lactate dehydrogenase, an NADH-preferring mutated xylose reductase (XR), a xylitol dehydrogenase and a xylulokinase. The recombinant strain showed 53% increased L-lactic acid production compared with the reference strain expressing native XR (NADPH-preferring).  相似文献   

7.
运用PCR技术扩增出短小芽孢杆菌木聚糖酶A基因,构建分泌型重组质粒pET22-xynA,并构建木糖还原酶重组质粒pET28-xyl1。利用双抗生素抗性将pET22-xynA和pET28-xyl1在E.coliBL21(DE3)plysS中共表达,鉴定了木聚糖酶和木糖还原酶的活性。此外,还对其利用木聚糖生产木糖醇做了初步研究,为将来直接应用玉米芯等农副产品生产木糖醇奠定了基础。  相似文献   

8.
The D-Xylose reductase (XR) gene (xyrA) of Candida tropicalis IFO 0618 was expressed in Escherichia coli JM109. The enzymatic properties of each recombinant XR such as the Km value for D-xylose and NADPH, the substrate specificity for other sugars and the optimal pH were essentially the same as those of the corresponding enzyme of C. tropicalis. The recombinant XR was more heat-stable than C. tropicalis XR at 60 degrees C. E. coli, expressing the xyrA gene, successfully converted D-xylose to xylitol. When D-xylose (50 g/l) and D-glucose (5 g/l) were added to IPTG-induced cells, 13.3 g/l of xylitol was produced during 20 h of cultivation.  相似文献   

9.
Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wild-type level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate than the strain with wild-type G6PDH-activity, which suggested that the availability of intracellular NADPH correlated with tolerance towards lignocellulose-derived inhibitors. Low G6PDH-activity strains were also more sensitive to H(2)O(2) than the control strain TMB3001.  相似文献   

10.
Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M(r) 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M(r) 37000, pI 3.6 and a 60-fold preference for NADPH over NADH. In this study, the influence of aeration and the response to the addition of electron acceptors on xylose fermentation by F. oxysporum were also studied. The batch cultivation of F. oxysporum on xylose was performed under aerobic, anaerobic and oxygen-limited conditions in stirred tank reactors. Oxygen limitation had considerable influence on xylose metabolism. Under anaerobic conditions (0 vvm), xylitol was the main product with a maximum yield of 0.34 mole of xylitol/mole of xylose while the maximum ethanol yield (1.02 moles of ethanol/mole of xylose) was obtained under aerobic conditions (0.3 vvm). When the artificial electron acceptor acetoin was added to an anaerobic batch fermentation of xylose by F. oxysporum, the ethanol yield increased while xylitol excretion was also decreased.  相似文献   

11.
研究了从热带假丝酵母(Candida tropicalis)菌体中获得的木糖还原酶(XR)的酶学性质。实验结果证实,C.tropicalis的细胞浆粗提液经盐析、透析及阴离子交换柱层析后得到的酶液中木糖还原酶比酶活为9·3U/mg、最适酶反应pH为6·0、最适反应温度为35℃;以木糖为底物时,Km·Xyl为64·8mmol/L、Km·N·X为0·0622mmol/L;以阿拉伯糖为底物时,Km·Ara为172mmol/L、Km·N·A为0·0375mmol/L。Zn2+是木糖还原酶的激活剂,Fe3+为抑制剂。固定木糖为反应底物,分别以NADPH及NADH为辅酶测定酶活,实验结果显示该菌体中木糖还原酶的活性主要依赖于辅酶NADPH。  相似文献   

12.
将人工合成的树干毕赤酵母(Pichia stipitis)的木糖还原酶基因XYL1插入酿酒酵母(Saccharomyces cerevisiae)表达载体pYES2中,然后将重组质粒pYES2-XYL1导入酿酒酵母INVSc1中,构建转木糖还原酶基因XYL1酿酒酵母菌株INVSc1/pYES2-XYL1,最后采用营养缺陷培养基筛选转木糖还原酶基因酿酒酵母并对其产木糖醇的能力进行检测。结果表明,成功获得2株转木糖还原酶基因XYL1酿酒酵母菌株INVSc1/pYES2-XYL1-01、INVSc1/pYES2-XYL1-02,当两菌株以50 g/L木糖及10 g/L半乳糖为碳源发酵5 d后,木糖醇产量分别高达(13.68±2.37)g/L、(12.09±1.45)g/L,显著高于非转基因酿酒酵母INVSc1的木糖醇产量(1.08±0.37)g/L(P<0.05),说明XYL1基因的导入显著提高了酿酒酵母INVSc1生产木糖醇的能力(P<0.05)。为采用基因工程酿酒酵母制备食用木糖醇提供了理论及技术基础。  相似文献   

13.
利用酿酒酵母(Saccharomyces cerevisiae)表面展示系统,将来源于热带假丝酵母(Candida tropicalis)的木糖还原酶基因xyl1嵌入带有His-Tag的酿酒酵母α-凝集素展示载体pICAS-His,构建重组质粒pICAS- His-Ctxyl1,并转化到酿酒酵母宿主菌酿酒酵母MT8—1,通过流式细胞仪快速检测和筛选,得到重组菌株MT8- 1/pICAS-His—Ctxyl1。将重组酵母用于葡萄糖(15g/L)和木糖(5g/L)的混合糖发酵研究,结果表明,重组酿酒酵母MT8/1/pICAS-His—Ctxyl1细胞具有良好的生长和产酶特性,同时能转化木糖生产木糖醇,在培养基中2.5g/ L木糖转化生成2.5g/L木糖醇,转化率达98.7%。  相似文献   

14.
The aim of this preliminary study was to improve the knowledge about milk fat globules by studying the relationships between the morphometric characteristics of fat globules, the fatty acid composition and the activity of membrane enzymes evaluated in 14 milk samples from Massese ewes: xanthine oxidase (XO), xanthine dehydrogenase (XDH), γ-glutamyl transpeptidase (γ-GT), alkaline phosphatase (AP) and 5′-nucleotidase (5′-N). A negative correlation was found between the activity of XO and XDH and fat globule size, and a positive correlation between AP activity, the number of globule per mL and medium fat globules (2–5 μm). A significant relationship was found between the enzymatic activity of γ-GT, XO, XDH, 5′-N and various fatty acids in milk.  相似文献   

15.
Saccharomyces cerevisiae mutants, in which open reading frames (ORFs) displaying similarity to the aldo-keto reductase GRE3 gene have been deleted, were investigated regarding their ability to utilize xylose and arabinose. Reduced xylitol formation from D-xylose in gre3 mutants of S. cerevisiae suggests that Gre3p is the major D-xylose-reducing enzyme in S. cerevisiae. Cell extracts from the gre3 deletion mutant showed no detectable xylose reductase activity. Decreased arabitol formation from L-arabinose indicates that Gre3p, Ypr1p and the protein encoded by YJR096w are the major arabinose reducers in S. cerevisiae. The ypr1 deletion mutant showed the lowest specific L-arabinose reductase activity in cell extracts, 3.5 mU/mg protein compared with 7.4 mU/mg protein for the parental strain with no deletions, and the lowest rate of arabitol formation in vivo. In another set of S. cerevisiae strains, the same ORFs were overexpressed. Increased xylose and arabinose reductase activity was observed in cell extracts for S. cerevisiae overexpressing the GRE3, YPR1 and YJR096w genes. These results, in combination with those obtained with the deletion mutants, suggest that Gre3p, Ypr1p and the protein encoded by YJR096w are capable of xylose and arabinose reduction in S. cerevisiae. Both the D-xylose reductase and the L-arabinose reductase activities exclusively used NADPH as co-factor.  相似文献   

16.
研究葡萄糖-6-磷酸脱氢酶基因g6pd过量表达对Candida tropicalis木糖醇生物合成代谢的影响。克隆Candidatropicalis CT16的g6pd基因,并将其与表达载体pYES-pgk重组连接,构建重组载体pYES-pgk-g6pd,LiAc/ssDNA/PEG方法转化导入C. tropicalis CT16,筛选阳性转化子,实现g6pd基因的过量表达。结果表明:发酵62 h,阳性转化子C. tropicalis SYG5的葡萄糖-6-磷酸脱氢酶活力提高了300%,发酵液中木糖醇质量浓度达到79.90 g/L,较野生型对照菌株的木糖醇产量提高了12.41%,木糖醇产率提高了44.94%。因此,葡萄糖-6-磷酸脱氢酶在C. tropicalis木糖醇的合成代谢途径中发挥重要作用,增强g6pd基因的表达,可以明显提高菌体NADPH供应量和还原力,有利于木糖醇的生物合成。  相似文献   

17.
将树干毕赤氏酵母(Pichia stipitis)木糖还原酶基因XYL1连接到适用于酿酒酵母工业菌株的多拷贝整合载体pYMIKP中,构建得到表达质粒pYMIKP-XYL1,转化酿酒酵母工业菌株Saccharomyces cerevisiae6508。在G418平板上筛选转化子,得到含高拷贝木糖还原酶基因的酿酒酵母重组菌株XGH2,,该菌株的木糖还原酶比活力为0.8 U/mg(蛋白),比出发菌株提高了80倍以上,表明外源基因在工业菌株中实现了高效表达。摇瓶发酵结果显示,重组菌株XGH2木糖消耗为27.9 g/L,木糖消耗率为51%;木糖醇产量为30.2 g/L,木糖醇的转化率大于1.0 g/g木糖。  相似文献   

18.
Xanthine oxidase/dehydrogenase (XO/XDH) increases at mid gestation in mammary gland but not in liver of the mouse and remains elevated until the pups are weaned at 20 d post partum. The increase in enzyme activity is due neither to alteration in activators or inhibitors nor to a production of a variant enzyme with altered catalytic properties. The increase is preceded in vivo by a surge of prolactin-like activity (placental lactogen) in plasma, and prolactin is required for induction of XO/XDH in explant culture in vitro. Induction of XO/XDH in vivo and in vitro precedes the full histological differentiation of the gland. In addition, induction of XO/XDH in vitro occurs more rapidly and at lower concentrations of prolactin than does histological differentiation. Thus although XO/XDH is present in milk, increased XO/XDH activity is an early event in mammogenesis in vivo and in vitro rather than a terminal component of differentiation.  相似文献   

19.
以木糖为底物利用酵母细胞转化生产木糖醇,研究细胞增殖培养基中不同种类的碳源、氮源和微量元素及其添加量对酵母细胞生长和木糖转化率的影响。结果表明,当碳源为木糖和葡萄糖添加量分别为1%时,木糖醇浓度为49.6g/L;当无机氮源为蛋白胨且浓度为2%时,木糖转化时间为60h,木糖醇浓度达到58g/L;微量元素为磷酸二氢钾浓度为0.1%时,木糖的转化时间为48h,此时木糖醇浓度达到59g/L。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号