首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Floral odor is a key trait for pollinator attraction in many plants, but may also direct antagonists like herbivores to flowers. In this study, we examined how floral scent changes after pollination in Silene latifolia, which has a specialized relationship with the seed predator Hadena bicruris. We found an overall decrease in total scent emission and considerable changes in relative amounts of scent compounds after pollination. Lilac aldehydes A and B as well as veratrole contributed most to the decrease in scent emission. These three compounds are known to be key signals for the attraction of H. bicruris to the flowers. A specific downregulation of these compounds may increase the reproductive success of the plant by reducing seed predation after pollination.  相似文献   

2.
Cuticular hydrocarbons (CHCs) play an important role as contact pheromones in insects, particularly in flies. However, for many fly taxa our understanding of the importance of CHCs in sexual communication is limited. Within the family Calliphoridae (blowflies), sex-specific differences in CHCs have been reported for several species, but there is no evidence that CHCs facilitate sexual behavior. In order to elucidate the function of CHCs in Calliphoridae, studies combining behavioral and chemical analyses are required. The present study used gas chromatography/mass spectrometry, along with behavioral assays, to assess whether CHCs facilitate sexual attraction in the small hairy maggot blowfly, Chrysomya varipes. The specific aims were to: 1) determine if CHCs differ between the sexes and 2) assess whether flies exhibit positive chemotaxis to CHCs of the opposite sex. Fifty-two hydrocarbons common to both sexes were identified, and quantitative differences for numerous CHCs were observed between the sexes. However, behavioral assays provided no evidence that flies were attracted to CHCs of the opposite sex, challenging the hypothesis that CHCs facilitate sexual attraction in Ch. varipes. In contrast to other blowflies, Ch. varipes males invest heavily in courtship displays and ornamentation, so we speculate that visual communication in this species may have relaxed sexual selection for chemical communication. More broadly, our findings support suggestions that CHCs may not always facilitate insect sexual communication.  相似文献   

3.
For armor applications, ceramic materials are often useful due to their high dynamic strength. In some instances, in addition to high strength, the armor must also be transparent, which significantly limits the choices of materials. Materials in the aluminum oxide–aluminum nitride family (including Al2O3 and AlON) are both strong and transparent. Only the end compound AlN is opaque. In this paper, the dynamic response to shock loading is examined for these materials to better understand the material response. Despite the chemical similarities, significant differences exist in the shock response and will be discussed.  相似文献   

4.
The surface energy of metallic nanocrystals is relatively high compared to bulk materials due to the metal–metal bond deficiency of the surface atoms. This results in an insufficient chemical valency. In addition, smaller nanoparticles possess a higher degree of curvature, weakening the bonding of their surface atoms. This is especially true for non-spherical shapes, which are comprised of a large number of sharp corner and edge sites. These atomic sites possess higher surface energies due to the lower number of shared bonds with the nanoparticle, resulting in instability of the surface atoms and rendering them physically unstable and chemically active. In many instances, the constant “bombardment” of these surface atoms by the solvent molecules as well as by the reactant molecules when these nanocrystals are in colloidal solution could lead to surface atom dissolution, both physically and/or chemically. This phenomenon could alter the functionality of the metallic colloidal nanoparticle from supplying catalytically active sites (in heterogeneous catalysis) to serving as a reservoir of catalytically active species to the solution (in homogeneous catalysis). In the latter type, if the atoms of the nanocatalyst appear in the products, the nanoparticle is no longer a catalyst but a reactant. In this review we attempt to answer the question raised in the title by examining our previous work on the changes in size, shape, and other physical and chemical properties of colloidal transition metal nanoparticles during the nanocatalysis of two fundamentally different and important reactions: (1) the gentle electron-transfer reaction at room temperature involving the reduction of hexacyanoferrate (III) ions with thiosulfate ions and (2) the more harsh Suzuki cross-coupling reaction between phenylboronic acid and iodobenzene that takes place at 100 °C for 12 h. Changes in the nanoparticle dimensions were followed with TEM and HRTEM. Raman and FTIR spectroscopies were used to follow the chemical changes. For each change, we will use the above definition to see if the observed change can help us determine whether the catalysis is homogeneous or heterogeneous.  相似文献   

5.
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), displays a lek mating system characterized by a high level of female discrimination among potential mates. The basis of female choice is not understood, but recent studies indicate that male exposure to the aroma of certain plant structures or essential oils may increase mating success. In particular, exposure to the aroma of ginger root oil (GRO) enhances male mating frequency, and several sterile-male release programs against C. capitata have incorporated ‘aromatherapy’ (large-scale exposure of pre-release insects to GRO) to increase the effectiveness of control efforts. We investigated the mechanism underlying female preference for GRO-exposed males. Two sets of experiments were conducted. In the first, we monitored female attraction to (1) freshly killed flies, or (2) paper discs that contained hexane extracts from varying treatments. In these tests, females were sighted more often (1) near GRO-exposed than non-exposed males (even when the males were visually concealed) and (2) near extracts from GRO-exposed than non-exposed males. These findings suggest a ‘perfume effect’, whereby female mate choice is mediated by olfactory differences. In the second set, we compared (1) mate choice between intact females and females from which both antennae had been surgically removed, and (2) mating success between intact males and males from which both antennae had been surgically removed before GRO exposure. Intact females preferred GRO-exposed males, whereas females lacking both antennae rarely mated and showed no preference between GRO-exposed and non-exposed males. In the opposite treatment (intact females but surgically altered males), GRO-exposed males lacking both antennae mated as frequently as GRO-exposed intact males. These data suggest that female choice was dependent on olfactory perception of male odor but that male mating success did not depend on olfactory perception of GRO aroma, suggesting, in turn, that GRO conferred a mating advantage through an external phenomenon (possibly alteration of cuticular scent) rather than through internal processing (pheromone synthesis).  相似文献   

6.
A growing body of evidence indicates that odors are used in individual, sexual, and species recognition in vertebrates, and may be reliable signals of quality and compatibility. Petrels are seabirds that exhibit an acute sense of smell. During the breeding period, many species of petrel live in dense colonies on small oceanic islands and form pairs that use individual underground burrows. Mates alternate between parental duties and foraging trips at sea. Returning from the ocean at night (to avoid bird predators), petrels must find their nest burrow. Antarctic prions, Pachyptila desolata, are thought to identify their nest by recognizing their partner’s odor, suggesting the existence of an individual odor signature. We used gas chromatography and mass spectrometry to analyze extracts obtained from the feathers of 13 birds. The chemical profile of a single bird was more similar to itself, from year to year, than to that of any other bird. The profile contained up to a hundred volatile lipids, but the odor signature may be based on the presence or absence of a few specific compounds. Our results show that the odor signature in Antarctic prions is probably endogenous, suggesting that in some species of petrels it may broadcast compatibility and quality of potential mates.  相似文献   

7.
Abstract

A novel methodology for the quickest detection of abrupt changes in the generating mechanisms (stochastic, deterministic, or mixed) of a time series, without any prior knowledge about them, is developed. This methodology has two components: the first is a novel concept of the ε-complexity and the second is a method for the quickest change point detection (Darkhovsky, 2013 Darkhovsky , B. S. ( 2013 ). Detection of Changes in Random Sequence with Minimum Priori Information, Theory of Probability and Its Applications 58:585–590. (in Russian)  [Google Scholar]). The ε-complexity of a continuous function given on a compact segment is defined. The expression for the ε-complexity of functions with the same modulus of continuity is derived. It is found that, for the Hölder class of functions, there exists an effective characterization of the ε-complexity. The conjecture that the ε-complexity of an individual function from the Hölder class has a similar characterization is formulated. The algorithm for the estimation of the ε-complexity coefficients via finite samples of function values is described. The second conjecture that a change of the generating mechanism of a time series leads to a change in the mean of the complexity coefficients, is formulated. Simulations to support our conjectures and verify the efficiency of our quickest change point detection algorithm are performed.  相似文献   

8.
Chemoresistance of germ cell tumors (GCTs) represents an intensively studied property of GCTs that is the result of a complicated multifactorial process. One of the driving factors in this process is the tumor microenvironment (TME). Intensive crosstalk between the DNA damage/DNA repair pathways and the TME has already been reported. This study aimed at evaluating the interplay between the immune TME and endogenous DNA damage levels in GCT patients. A cocultivation system consisting of peripheral blood mononuclear cells (PBMCs) from healthy donors and GCT cell lines was used in an in vitro study. The patient cohort included 74 chemotherapy-naïve GCT patients. Endogenous DNA damage levels were measured by comet assay. Immunophenotyping of leukocyte subpopulations was performed using flow cytometry. Statistical analysis included data assessing immunophenotypes, DNA damage levels and clinicopathological characteristics of enrolled patients. The DNA damage level in PBMCs cocultivated with cisplatin (CDDP)-resistant GCT cell lines was significantly higher than in PBMCs cocultivated with their sensitive counterparts. In GCT patients, endogenous DNA damage levels above the cutoff value were independently associated with increased percentages of natural killer cells, CD16-positive dendritic cells and regulatory T cells. The crosstalk between the endogenous DNA damage level and specific changes in the immune TME reflected in the blood of GCT patients was revealed. The obtained data contribute to a deeper understanding of ongoing interactions in the TME of GCTs.  相似文献   

9.
10.
The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.  相似文献   

11.
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.  相似文献   

12.
The role of epicardial adipose tissue (EAT) in the pathophysiology of coronary artery disease (CAD) remains unclear. The present systematic review aimed at compiling dysregulated proteins/genes from different studies to dissect the potential role of EAT in CAD pathophysiology. Exhaustive literature research was performed using the keywords “epicardial adipose tissue and coronary artery disease”, to highlight a group of proteins that were consistently regulated among all studies. Reactome, a pathway analysis database, was used to clarify the function of the selected proteins and their intertwined association. SignalP/SecretomeP was used to clarify the endocrine function of the selected proteins. Overall, 1886 proteins/genes were identified from 44 eligible studies. The proteins were separated according to the control used in each study (EAT non-CAD or subcutaneous adipose tissue (SAT) CAD) and by their regulation (up- or downregulated). Using a Venn diagram, we selected the proteins that were upregulated and downregulated (identified as 27 and 19, respectively) in EAT CAD for both comparisons. The analysis of these proteins revealed the main pathways altered in the EAT and how they could communicate with the heart, potentially contributing to CAD development. In summary, in this study, the identified dysregulated proteins highlight the importance of inflammatory processes to modulate the local environment and the progression of CAD, by cellular and metabolic adaptations of epicardial fat that facilitate the formation and progression of atherogenesis of coronaries.  相似文献   

13.
The effects of sodium bisulfite on the electrophoresis profile; turbidity; and thermal, surface, and adhesive properties of soy β-conglycinin protein were studied. Sodium bisulfite dissociated high-molecular-weight aggregates in the protein, and the aggregate percentage decreased with increasing sodium bisulfite concentration. Denaturation temperature of sodium-bisulfite-treated β-conglycinin increased as sodium bisulfite increased. However, at high sodium bisulfite concentration (i.e. 36 g/L), denaturation enthalpy decreased significantly. Sodium bisulfite caused changes in the β-conglycinin secondary structure and promoted ionization of lysine residues as indicated by FT-IR results. A sudden drop in turbidity at pH 4.8 was observed at the same salt level. The contact angle of β-conglycinin on cherry wood reached its minimum at 6 g/L sodium bisulfite and 24 g/L on glass. Water resistance of β-conglycinin was improved but not significantly by 6 g/L sodium bisulfite at pH 9.5. An obvious increase in adhesion strength of the protein occurred at 3 and 6 g/L sodium bisulfite at pH 4.8. A high sodium bisulfite concentration at 36 g/L sharply reduced the adhesive performance of β-conglycinin.  相似文献   

14.
Pancreatic Ductal Adenocarcinoma (PDAC) constitutes a leading cause of cancer death globally. Its mortality remains unaltered despite the considerable scientific progress made in the fields of diagnostics and treatment. Exosomes comprise of small extracellular vesicles secreted by nearly all cells; their cargo contains a vast array of biomolecules, such as proteins and microRNAs. It is currently established that their role as messengers is central to a plethora of both physiologic and pathologic processes. Accumulating data have shed light on their contributions to carcinogenesis, metastasis, and immunological response. Meanwhile, the advancement of personalized targeted therapies into everyday clinical practice necessitates the development of cost-efficient treatment approaches. The role of exosomes is currently being extensively investigated towards this direction. This review aims to summarize the current pre-clinical and clinical evidence regarding the effects of exosomal applications in the timely diagnosis, prognosis, and therapeutic management of pancreatic cancer.  相似文献   

15.
16.
17.
Anandamide (AEA) is one of the best characterized members of the endocannabinoid family and its involvement in many pathophysiological processes has been well documented in vertebrates and invertebrates. Here, we report the biochemical and functional characterization of key elements of the endocannabinoid system in hemocytes isolated from the Mediterranean mussel Mytilus galloprovincialis. We also show the effects of exogenous AEA, as well as of capsaicin, on the cell ability to migrate and to activate the respiratory burst, upon in vitro stimulation of phagocytosis. Interestingly, our findings show that both AEA and capsaicin suppress the hemocyte response and that the use of selective antagonists of CB2 and TRPV1 receptors revert their inhibitory effects. Overall, present data support previous evidence on the presence of endocannabinoid signaling in mollusks and advance our knowledge about the evolutionary origins of this endogenous system and its role in the innate response of mollusks.  相似文献   

18.
Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.  相似文献   

19.
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.  相似文献   

20.
Magnetic nanoparticles [MNPs] made from iron oxides have many applications in biomedicine. Full understanding of the interactions between MNPs and mammalian cells is a critical issue for their applications. In this study, MNPs were coated with poly(ethylenimine) [MNP-PEI] and poly(ethylene glycol) [MNP-PEI-PEG] to provide a subtle difference in their surface charge and their cytotoxicity which were analysed by three standard cell viability assays: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium [MTS], CellTiter-Blue and CellTiter-Glo (Promega, Southampton, UK) in SH-SY5Y and RAW 264.7 cells The data were validated by traditional trypan blue exclusion. In comparison to trypan blue manual counting, the MTS and Titer-Blue assays appeared to have consistently overestimated the viability. The Titer-Glo also experienced a small overestimation. We hypothesise that interactions were occurring between the assay systems and the nanoparticles, resulting in incorrect cell viability evaluation. To further understand the cytotoxic effect of the nanoparticles on these cells, reactive oxygen species production, lipid peroxidation and cell membrane integrity were investigated. After pegylation, the MNP-PEI-PEG possessed a lower positive surface charge and exhibited much improved biocompatibility compared to MNP-PEI, as demonstrated not only by a higher cell viability, but also by a markedly reduced oxidative stress and cell membrane damage. These findings highlight the importance of assay selection and of dissection of different cellular responses in in-vitro characterisation of nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号