共查询到20条相似文献,搜索用时 0 毫秒
1.
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ε, renormalization group k-ε, and Spalart-Allmars models, the Realizable k-ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller. 相似文献
2.
通过对叶轮内液流流动分析 ,提出了减小叶轮出口射流——尾流结构的措施。为减小圆盘摩擦损失 ,对叶轮结构采取了适量车削前后盖板、周向修圆叶片的方法。 相似文献
3.
针对多级离心泵在突然断电情况下可能出现的意外事故问题,基于滑移网格技术、用户自定义函数和SIMPLE算法,在关死点处和给定转速下降规律情况下,对一多级离心泵首级叶轮的停机过程进行了内部非定常粘性流动的数值模拟,通过数值计算获得了多级离心泵首级叶轮停机过程的外特性和内部流场演化特性,重点分析了叶轮进口、叶轮出口和反导叶出口3个位置处的瞬态物理量变化。研究结果表明,无量纲扬程系数在停机之前和停机过程前期阶段基本不变,而在停机过程末期迅速下降,叶轮停止转动时,各个物理参数并未同步趋零,总之表现出明显的瞬态行为特征;叶轮出口处的物理量参数变化受叶轮转动影响最大,其次受叶轮进口处的参数变化影响,而反导叶出口处的参数变化最小。 相似文献
4.
The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump. 相似文献
5.
针对传统离心泵叶轮设计步骤繁琐的不足,提出了基于SolidWorks的三维参数化离心泵叶轮注塑模设计方法。简单介绍了SolidWorks的主要功能模块及离心泵叶轮模具设计的流程,详细阐述了离心泵叶轮模具设计的步骤。设计中,叶轮采用尼龙6/10材料,其拔模斜度为1.5°,收缩率为1%。通过对模具各零部件的造型与实时修改,实现了离心泵叶轮模具的参数化设计,并完成了模具的虚拟装配及加工出详图的快速输出。本方法对工程设计具有一定的实用价值。 相似文献
6.
为了解复合叶轮内部流动特性,采用雷诺时均Navier-Stokes方程和Spalart-Allmaras湍流模型对4长叶片的普通叶轮和4长4中8短16叶片的复合叶轮内部流动进行了数值模拟,得到了设计工况下两种叶轮内部流场分布,分析了中、短分流叶片对叶轮内部流场的影响。计算结果表明:采用长、中、短叶片设计的复合叶轮可以改善流道内流场分布,提高长叶片吸力面压力,有效地阻止液流的脱流,复合叶轮可以获得更高的静压差,有效地提高了离心泵的扬程。 相似文献
7.
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Q_d and 1.4Q_d is proposed. Three parameters, namely, the blade outlet width b_2, blade outlet angle β_2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Q_d and 1.4Q_d, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations. 相似文献
8.
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far.There exist two main problems in the operation of the two-phase flow pumps,i.e.,low overall efficiency and severe abrasion.In this study,the three-dimensional,steady,incompressible,and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics(CFD) code based on the mixture model of the two-phase flow and the RNG k-two-equation turbulence model,in which the influences of rotation and curvature are fully taken into account.The coupling between impeller and volute is implemented by means of the frozen rotor method.The simulation results predicted indicate that the solid phase properties in two-phase flow,especially the concentration,the particle diameter and the density,have strong effects on the hydraulic performance of the pump.Both the pump head and the efficiency are reduced with increasing particle diameter or concentration.However,the effect of particle density on the performance is relatively minor.An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration.The suction side of the blade is subject to much more severe abrasion than the pressure side.The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump,and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps. 相似文献
9.
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump. 相似文献
10.
针对离心泵内固液两相流动问题,采用离散模型(DPM),考虑液相与固体颗粒之间相互作用,对离心泵内固液流场中大直径颗粒的粒子运动进行了数值模拟。并对颗粒的运动轨迹、固液两相流磨损进行了进一步的分析。使用UDF文件对颗粒加入Basset力,通过粒子运动轨迹线与恒定非恒定流线的对比,得出了粒子随直径变化对离心泵内流动情况的影响,并在此基础上进行了内部流动对性能的影响以及磨损规律分析。研究结果表明,当粒子直径大于1 mm时,通过使用DPM模型能更准确地获得粒子在泵内的运动情况,颗粒的运动轨迹向叶片工作面偏转较大并且存在多次撞击过程对叶片的磨损程度大,小颗粒易与叶片工作面后端发生撞击,且速度较低,对叶片的冲蚀磨损相对弱些。 相似文献
11.
针对目前有关OpenFOAM对带导叶这种特殊结构的离心泵的计算研究较少且没有形成系统性研究的现状,为了验证OpenFOAM开源软件在导叶式离心泵数值计算方面的可靠性,分别对0.6Qd~1.4Qd流量工况下的导叶式离心泵进行外特性试验以及稳态和瞬态的数值计算.结果表明:OpenFOAM计算得到的外特性结果贴近试验数据,最... 相似文献
12.
为分析螺旋式纸浆离心泵内部流动状态,给优化过流部件结构的优化设计提供基础,采用CFD分析软件Fluent对螺旋式离心泵内部单相流动和固液两相流动进行了数值模拟。给出了螺旋式叶轮建模方法和流场分析方法,分析了泵内流体速度和压力的分布特性,并基于流动模拟结果预测了水力性能,单相输送条件下的计算结果与试验结果取得了较好的一致。通过对一定体积浓度和颗粒粒径下固液两相流的研究计算,分析了螺旋式离心泵叶片表面以及流道内的固液相分布状态,对螺旋式结构的优化具有一定的参考意义。 相似文献
13.
As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively higher hydraulic loss, which is rarely reported. In order to investigate the influence of blade thickness on the transient flow characteristics of a centrifugal slurry pump with a semi-open impeller, transient numerical simulations were carried out on six impellers, of which the meridional blade thickness from the leading edge to trailing edge varied from 5-10 mm, 5-15 mm, 5-20 mm, 10-10 mm, 10-15 mm, and 10-20 mm, respectively. Then, two of the six impellers, namely cases 4 and 6, were manufactured and experimentally tested for hydraulic performance to verify the simulation results. Results of these tests agreed reasonably well with those of the numerical simulation. The results demonstrate that when blade thickness increases, pressure fluctuations at the outlet of the impeller become severe. Moreover, the standard deviation of the relative velocity in the middle portion of the suction sides of the blades decreases and that at the outlet of the impeller increases. Thus, the amplitude of the impeller head pulsation for each case increases. Meanwhile, the distribution of the time-averaged relative flow angle becomes less uniform and decreases at the outlet of the impeller. Hence, as the impeller blade thickness increases, the pump head drops rapidly and the maximum efficiency point is offset to a lower flow rate condition. As the thickness of blade trailing edge increases by 10 mm, the head of the pump drops by approximately 5 m, which is approximately 10 % of the original pump head. Futhermore, it is for the first time that the time-averaged relative flow angle is being considered for the analysis of transient flow in centrifugal pump. The presented work could be a useful guideline in engineering practice when designing a centrifugal slurry pump with thick impeller blades. 相似文献
14.
针对离心泵极大流量工况下内部流动特性的问题,应用流体动力学软件Fluent,采用RNGκ-ε湍流模型与SIMPLEC算法,对某一高比转速离心泵内部流场进行了数值模拟,并与实验结果进行了比较。对比分析了4种不同流量工况下离心泵内部流体速度和压力分布以及离心泵的外特性。研究结果表明,在设计流量工况下,离心泵内部压力分布均匀,速度迹线平滑;较大流量工况下,蜗壳压力不断减小,速度分布不均匀;极大流量(1.7Qopt)工况下,蜗壳出口处出现局部负压现象,速度流线产生的漩涡增大,在扩散管局部位置流体受到冲击,容易出现回流现象。针对离心泵在不同工况下以及达到极大流量工况下内部流动随流量变化规律的研究,可为高比转速离心泵多工况优化设计、延长使用寿命提供参考。 相似文献
15.
为研究导叶扩散段无量纲参数对离心泵水力性能的影响,通过控制导叶喉部参数设计出5种导叶扩散度方案,采用雷诺时均N-S方程和RNGκ-ε湍流模型对离心泵进行全流场计算,对比分析了不同扩散度方案对上游叶轮、导叶本身以及下游压水室水力性能的影响,并验证了数值分析的可靠性.研究表明:导叶扩散度对上游叶轮水力性能较大,叶轮效率随导... 相似文献
16.
Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-o9 turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structuxe. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability. 相似文献
17.
针对离心泵内流场特性分析困难的问题,对离心泵流场数值模拟的几何模型建立、模型网格划分和边界条件设定进行了研究,采用计算流体力学方法,获取了在敞水性能条件下离心泵的扬程-流量、效率-流量的变化关系;结合Zwart空化模型,重点对不同有效汽蚀余量时离心泵的空化流场进行了数值模拟,得到了离心泵的内部流线和空泡分布的情况,并与该离心泵机组进行了性能测试实验,最后在此基础之上进行了对比分析。研究结果表明,所采用的数值模拟方法和空化模型合理有效,此结果可为进一步开展离心泵空化监测技术研究提供借鉴。 相似文献
18.
为了提高半开式叶轮离心泵的水力效率,应用速度系数法对半开式叶轮离心泵的水力效率进行了优化,并采用k-ε湍流模型和标准壁面函数对离心泵进行了数值模拟,仿真分析了蜗壳和叶轮顶端问不同间隙以及不同叶片数对离心泵水力效率的影响。研究结果表明,当蜗壳与叶轮顶面的间隙为0.5mm,叶片数为6时,离心泵的效率较好。 相似文献
19.
通过对100QJ 3.2型高速深井离心泵在不同网格数、不同湍流模型、不同模拟级数条件下进行三维定常数值模拟,分析了不同条件对其性能的影响,从而选出合适的数值模拟设置方法。将性能预测结果与样机试验结果对比,验证利用CFX软件预测高速深井离心泵性能的可行性。结果表明:采用叶轮网格数为40万、Standard k-ε湍流模型、两级全流场模型对高速深井离心泵进行全流场三维定常数值模拟最为合适。 相似文献
20.
为研究漩涡泵的气液混输性能,采用Fluent计算软件对泵内部气液两相流场进行了数值模拟。模拟结果初步揭示了该泵内气液两相流动特征,由此可知泵流道内的气泡主要集中在叶片压力面根部,气泡聚集程度随含气率的增加而增加。泵性能预测曲线与试验曲线较为吻合,说明了所采用的计算模型是基本可行的。 相似文献
|