首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CGP-2催化剂的开发及其在MIP-CGP装置中的应用   总被引:1,自引:0,他引:1  
阐述了降低催化裂化汽油烯烃、硫含量,同时多产丙烯的催化剂CGP-2的研究开发与工业应用结果。CGP-2催化剂具备良好的水热稳定性,可以适应MIP-CGP工艺的双反应区尤其是第二反应区对于降低汽油馏分烯烃和硫含量的需求,此外,该催化剂还有着很强的重油裂化和抗重金属污染能力。基质中添加的L酸碱对组分,可作为对硫化物有选择性吸附和催化转化作用的活性中心。中石化沧州分公司的工业试验结果表明:CGP-2催化剂除了兼有CGP-1Z催化剂良好的产品分布和汽油性质的特点,还增加了降硫功能,汽油硫含量降低30.32%,汽油诱导期增加;丙烯产率进一步提高,焦炭选择性良好。使得沧州MIP-CGP装置生产的汽油,可满足2005年7月全国实施的新汽油标准。  相似文献   

2.
MIP-CGP工艺专用催化剂CGP-1的开发与应用   总被引:11,自引:3,他引:8  
阐述了生产汽油组分满足欧Ⅲ排放标准并多产丙烯的催化裂化工艺(简称MIP-CGP)专用催化剂(简称CGP-1)的研究开发与工业应用结果。CGP-1催化剂的基质具有良好的容炭性能,使活性组元受到良好保护,其优势作用在第二反应区得以充分发挥,具有更高的氢转移活性和强的汽油小分子烯烃裂化活性。中国石化九江分公司和镇海炼化公司的MIP-CGP工业试验标定结果表明,与常规FCC相比,采用CGP-1催化剂的MIP-CGP技术在生产烯烃体积分数小于18%的汽油组分的同时,丙烯产率达到8%以上。此外,汽油诱导期大幅提高,抗爆指数增加;总液体收率有所提高,干气产率下降,焦炭选择性良好。  相似文献   

3.
CGP-2催化剂的试生产及工业应用   总被引:1,自引:0,他引:1  
王涛 《齐鲁石油化工》2007,35(3):189-193
CGP-2催化剂是针对中国石化沧州分公司MIP-CGP装置的特殊要求设计生产的。该催化剂在催化剂齐鲁分公司完成了工业试生产,并在中国石化沧州分公司MIP-CGP装置上成功进行了工业试验。结果表明:与前期使用的CGP-1Z催化剂相比,总液收率增加0.57个百分点,丙烯产率增加1.1个百分点,较低的汽油烯烃含量,MON增加2个单位,诱导期增加450 min,汽油硫含量下降30.32%。CGP-2催化剂除了兼具CGP-1Z良好的产品分布和汽油性质的特点,还增加了降硫功能,使得沧州MIP-CGP装置生产的汽油,可满足2005年7月1日全国实施的新汽油标准。  相似文献   

4.
考察了MIP-CGP工艺在降低汽油烯烃含量的同时所具有的降硫作用,阐明了MIP—CGP工艺降低汽油硫含量的基本原理和影响因素。结果表明,通过提高转化率和第二反应区催化剂的藏量,MIP—CGP工艺可以将催化裂化汽油中的硫含量降至所要求的水平。  相似文献   

5.
多产清洁汽油和丙烯的FCC新工艺MIP-CGP的应用   总被引:3,自引:0,他引:3  
对中国石油化工股份有限公司沧州分公司1.0 Mt/a的FCC装置,采用中国石油化工股份有限公司石油化工科学研究院开发的MIP-CGP(Maximizing Iso-Paraffins-Cleaner Gasoline and Propylene)工艺技术进行了改造,装置改造后于2004年6月19日开工.生产标定结果表明:在催化剂活性较低条件下,汽油烯烃体积分数降低到31.9%,下降了14.9百分点;丙烯产率增加了2.97百分点;汽油的辛烷值RON和MON分别增加了1.9和2.0,从而提高了汽油的抗爆指数;汽油中硫含量下降了42.67%;在改善精制汽油性质的同时,还显著提高了总液体产品收率.  相似文献   

6.
为降低催化裂化汽油硫含量,石油化工科学研究院开发了增强型降低催化裂化汽油硫含量的催化剂(CGP-S),并在中国石化沧州分公司MIP装置上进行工业应用试验。结果表明,CGP-S催化剂具有显著降低催化裂化汽油硫含量的性能,与空白标定和CGP-2催化剂标定结果相比,当CGP-S催化剂占系统催化剂藏量的60%时,硫传递系数分别下降49.23%和27.43%。另外,CGP-S催化剂具有良好的重油转化能力和良好的产品选择性,能有效地改善汽油质量,与CGP-2催化剂相比,汽油选择性提高2.27个百分点,MON增加1个单位,汽油烯烃体积分数下降近4个百分点。  相似文献   

7.
MIP-CGP技术的工业试验   总被引:6,自引:6,他引:6  
石油化工科学研究院开发的生产汽油组分满足欧Ⅲ标准并增产丙烯的催化裂化技术(MIP-CGP).在中石化九江分公司第二套催化裂化装置上进行工业试验,该装置按新工艺要求进行了改造,一次运转成功,目前运行平稳。工业试验结果表明,采用新工艺后,装置的丙烯产率大幅增加,最高增加3.17个百分点,总液体收率有所增加;汽油的烯烃含量大幅度下降,烯烃体积分数小于18%,硫含量降低,辛烷值有所增加,汽油质量得到了全面的改善;基本实现了该技术开发的目标。  相似文献   

8.
生产清洁汽油组分并增产丙烯的催化裂化工艺   总被引:22,自引:13,他引:22  
生产汽油组分满足欧Ⅲ排放标准,又能增产丙烯的流化催化裂化工艺--MIP-CGP,在多产异构烷烃的催化裂化工艺基础上被提出。依据生产方案要求,研究了工艺条件和开发专用催化剂CGP-1,并在中型试验装置上进行该工艺探索试验。中型试验结果表明,在该反应系统中,用大庆重质原料油,可以生产出烯烃体积分数低于18%的汽油,同时还能生产丙烯,产率达9.20%。  相似文献   

9.
石油化工科学研究院研制的CGP-1GQ催化剂在中国石化上海高桥分公司1.40 Mt/a MIP装置上的工业应用结果表明,使用CGP-1GQ催化剂后,装置液化气产率达到18.71%,液化气中丙烯体积分数达到37.74%。液体收率、掺渣能力基本保持不变,装置汽油性质有所改善。表明CGP-1GQ催化剂用于MIP装置具有改善汽油性质和增产丙烯的效果。  相似文献   

10.
介绍了一种使用ZSM-5沸石催化剂对催化裂化汽油进行改质的流化床反应工艺.此工艺可有效降低汽油烯烃和硫含量,同时提高汽油辛烷值,改质汽油收率高,干气和焦炭产率较低.研究了不同反应条件下以及不同馏分汽油改质后产物分布的变化和烯烃、硫含量等汽油性质的改善情况.研究结果表明,采用低反应温度、高催化剂循环量条件,改质汽油烯烃含量、硫含量降低幅度大;相反,则裂化气产率和丙烯选择性提高.加工重馏分汽油时改质汽油收率高,但较全馏分汽油改质烯烃含量降幅稍低.  相似文献   

11.
催化裂化催化剂及助剂的现状和发展   总被引:2,自引:0,他引:2  
介绍了国内外催化裂化催化剂及助剂领域的最新动态.在全球范围内,许多催化剂企业进行了重组.在技术上,多种新的催化材料引入催化剂中.重油转化催化剂得到了越来越广泛的应用,降低汽油烯烃含量和硫含量催化剂的开发取得了实质进展.中国在特种催化裂化工艺专用催化剂技术方面明显处于国际领先水平,如CGP-1和CGP-2催化剂(MIP-CGP工艺专用催化剂)、MMC系列催化剂(DCC工艺专用催化剂),等等.受日益增长的丙烯市场需求影响,催化裂化催化剂对丙烯和液化石油气的选择性有了显著提高.今后,提高清洁汽油辛烷值的催化裂化催化剂以及减少催化裂化装置烟气污染排放的催化剂和助剂将成为研发的热点,催化剂低成本和清洁生产技术也将得到重视和发展.  相似文献   

12.
中国石油兰州化工研究中心研发出适合MIP-CGP(生产清洁汽油组分并多产丙烯)催化裂化(FCC)工艺使用的LDR-100催化剂,并在该中心XTL-5型提升管FCC中试装置上评价了该催化剂的性能。结果表明,与现有专用催化剂相比,使用LDR-100催化剂,在m(催化剂)/m(原料油)为6.9,反应温度为520℃,反应时间为1.82 s的相同工艺条件下,重油产率可降低1.45个百分点,丙烯产率可提高0.74个百分点,汽油的烯烃体积分数可降低6.13个百分点,汽油的研究法辛烷值可提高0.7个单位,显示出了较好的综合反应性能。本工作为使用二段提升管MIP-CGP工艺的FCC装置提供了一种选择催化剂的新途径。  相似文献   

13.
介绍了多产丙烯和低硫燃料油组分的催化裂化与加氢脱硫(MFP)技术在催化裂化装置的改造内容、工业试验以及工业应用。以MIP-CGP工艺为空白标定,对比了在专用催化剂占系统藏量50%和80%时MFP工艺操作条件和产品分布的变化。结果表明,采用MFP技术后,产物氢分布改善,液化气中丙烯和异丁烯含量大幅增加,低碳烯烃收率和选择性得到提高,并且维持了干气量和生焦量的稳定。催化裂化技术从追求高转化率向高选择性的转变,实现了碳氢资源高效利用;同时可以根据市场需求变化灵活调整生产方案,实现经济效益的最大化。  相似文献   

14.
 采用新型制备工艺,特别是通过对基质的改性开发出的MIP-CGP工艺专用催化剂CGP-1,可以选择性控制积炭沉积位置,其积炭后的催化剂仍保持较好的反应性能。孔分析及氩离子(Ar+)刻蚀实验结果表明,CGP-1待生剂中的炭主要沉积在基质的中孔(2~8 nm)中,很好地保护了催化剂的活性中心,这也与红外吡啶吸附酸性分析结果相符。因此,催化剂CGP-1在MIP-CGP装置的第二反应区中能够很好地裂化小分子烯烃,从而达到在降低汽油烯烃的同时多产丙烯这一目标。  相似文献   

15.
加工中间基原料MIP工艺专用催化剂RMI Ⅱ的开发   总被引:1,自引:1,他引:0  
石油化工科学研究院针对MIP工艺加工中间基原料油,采用较常规REUSY沸石具有更好的重油裂化能力、汽油降烯烃性能以及具有良好焦炭选择性的可接近性改善的AIRY沸石,研制了RMI Ⅱ专用催化剂。实验室评价结果表明,RMI Ⅱ专用催化剂的重油裂化与抗碱氮中毒、汽油降烯烃、增产丙烯等性能均优于常规裂化催化剂。中试放大试验结果表明,RMI Ⅱ专用催化剂中试大样的重油反应性能很好地重复了小试催化剂的结果,并且催化剂的制备易于在国内现有FCC催化剂生产装置上直接实施生产。  相似文献   

16.
1 Introduction Propylene as an important feedstock for organic chemicals is mainly originated from steam cracking and catalytic cracking processes. During the FCC process the propylene content varies with the FCC catalyst and process technology adopted, resulting in significant difference in propylene concentration in the cracked product——LPG. The conventional FCC pro- cess generally gives a propylene yield of around 4%, while the FCC process with maximization of propylene yield can in…  相似文献   

17.
MIP系列技术降低汽油硫含量的先进性及理论分析   总被引:6,自引:4,他引:2  
硫传递系数以同一汽油干点作为基准可以准确有效地评估不同催化裂化技术对汽油的降硫效果。MIP系列技术与常规FCC技术汽油硫含量对比的研究发现,当汽油干点基准相同时,MIP系列技术的汽油硫传递系数均低于常规FCC技术的汽油硫传递系数。MIP-CGP技术与其它多产丙烯催化裂化技术的汽油硫含量对比研究发现,当汽油干点小于185℃时,MIP-CGP技术的硫传递系数为3.93,小于FDFCC-III技术和ARGG技术;当汽油干点大于190℃时,MIP-CGP技术的硫传递系数为5.60,而DCC技术的硫传递系数为19.10,表明MIP-CGP技术降低汽油硫含量远优于其它多产丙烯的技术。分析了MIP汽油的硫含量降低的原因。  相似文献   

18.
降低汽油硫含量的重油裂化催化剂的开发   总被引:3,自引:0,他引:3  
摘要:降低汽油硫含量和重油催化裂化系列催化剂DOS的开发针对降硫组元及活性组元进行了研究,开发了降硫功能组元L酸碱对化合物和筛选了与之相匹配的分子筛活性组元。评价结果表明,开发的L酸碱对化合物能增加催化剂对大分子硫化物的转化,促进脱硫反应的发生;筛选的分子筛与L酸碱对化合物协同作用具有较好的降烯烃和降硫功能。开发的降硫重油裂化催化剂DOS在ACE装置和固定流化床装置评价结果表明:与工业降烯烃催化剂相比,重油转化能力强,抗重金属污染能力强,汽油硫含量可降低20%以上。  相似文献   

19.
增产丙烯和生产清洁汽油组分技术的工业试验   总被引:9,自引:0,他引:9  
在中国石油化工股份有限公司镇海炼油化工股份有限公司1.8M t/a的重油催化裂化装置上进行了增产丙烯和生产清洁汽油组分(M IP-CGP)技术的工业试验。工业试验结果表明,采用M IP-CGP技术,丙烯质量收率最高可达8.16%;汽油中的烯烃体积分数最低可降至18%以下。与原来采用的催化裂化工艺相比,汽油与原料油的硫含量(质量分数)之比下降50%~65%,辛烷值提高1.0~1.6个单位;总液体(液化气、汽油、柴油)质量收率约增加1%。该技术具有良好的技术经济效益和社会效益。  相似文献   

20.
分别考察了不同族组成的FCC汽油、FCC汽油窄馏分和几种模型化合物(1-己烯、3-甲基戊烷、正己烷和环己烷)催化裂化生成丙烯的性能。结果表明,高烯烃含量的FCC汽油催化裂化具有较高的转化率和丙烯产率。1-己烯、3-甲基戊烷、正己烷裂化环己烷生成丙烯的平均速率比1:2.0:2.5:32.5。在FCC汽油窄馏分催化裂化生成丙烯过程中,轻馏分裂化生成丙烯的贡献大于重馏分,因此回炼FCC汽油轻馏分制取丙烯是一种较好的选择。1-己烯的催化裂化反应中,主要发生裂化反应,占49%~69%,并且该比例随着反应温度的升高而增大;氢转移反应占15%~28%,并且随反应温度升高先增加后减小,在550℃时达到27.50%;聚合及环化反应分别占15%~28%,10%~15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号