首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.  相似文献   

2.
The aziridinium ion of ethylcholine (AF64A), a cholinergic neurotoxin, was injected into the right striatum of a rat. The unilateral injection of 10 nmol AF64A reduced the activity of choline acetyltransferase (CAT) and the tissue content of acetylcholine (ACh) in the striatum. The striatal contents of dopamine (DA), norepinephrine (NE), 5-hydroxyindoleacetic acid (5-HIAA) and gamma-aminobutyric acid (GABA) were unchanged. These results suggest that the cholinospecificity in the striatal lesion was induced by the 10 nmol dose of AF64A. The number of N-methyl-D-aspartic acid (NMDA) receptors in the striatum treated with 10 nmol AF64A was determined by a specific binding assay using [3H](+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a selective ligand for NMDA receptors. The number of the NMDA receptors decreased significantly in the injected area. On the other hand, in a microdialysis using normal rats, the perfusion of 50 microM NMDA into the striatum increased ACh release. The perfusion of 100 microM MK801 which is the specific and non-competitive NMDA receptor antagonist, decreased the basal levels of ACh release and blocked NMDA-elicited ACh release. Taken together, the present results strongly suggest that a population of NMDA receptors exists on cholinergic interneurons within the striatum, and it directly regulates ACh release.  相似文献   

3.
This study examined the effect of the cannabinoid receptor agonist, WIN 55212-2, on the electrically evoked release of [14C]acetylcholine (ACh) from superfused brain slices from the hippocampus, a region with a high density of cannabinoid receptors. A comparison was also made with [14C]ACh release from the nucleus accumbens, which has relatively fewer cannabinoid receptors. In the hippocampal slices, WIN 55212-2 produced a dose-dependent inhibition of [14C]ACh release, with an EC50 of 0.03 microM and a maximal inhibition of 81% at 1 microM. In the nucleus accumbens slices, WIN 55212-2 produced a weak inhibition of [14C]ACh release, which did not quite reach statistical significance. The inhibition of electrically evoked hippocampal [14C]ACh release by WIN 55212-2 could be prevented by the cannabinoid receptor antagonist, SR 141716A (EC50, 0.3-1.0 microM). In addition to antagonizing the effects of WIN 55212-2, SR 141716A alone produced a 2-fold potentiation of the electrically stimulated [14C]ACh release in this region (EC50, 0.1-0.3 microM). By contrast, in nucleus accumbens slices, no potentiation of the stimulated release of [14C]ACh release by SR 141716A was observed. Basal [14C]ACh release was unaffected by WIN 55212-2 or SR 141716A in either area. These results suggest that cannabinoid receptor activation can produce a strong inhibition of ACh release in the hippocampus. Furthermore, the potentiation of ACh release in the hippocampus by SR 141716A alone suggests either that this compound is an inverse agonist at cannabinoid receptors or it is antagonizing the actions of an endogenous ligand acting on these receptors.  相似文献   

4.
1. We have investigated the effect of nociceptin on the micturition reflex evoked by distension or topical application of capsaicin on the urinary bladder of urethane-anaesthetized rats. 2. Nociceptin produced a dose-dependent (3-100 nmol kg(-1) i.v.) transient suppression of the distension-evoked micturition reflex: its effect was not modified by guanethidine (68 micromol kg(-1) s.c.) nor by bilateral cervical vagotomy, alone or in combination, and by naloxone (1.2 micromol kg(-1) i.v.). 3. Nociceptin (100 nmol/kg i.v.) slightly (about 30%) inhibited the contractions of the rat bladder produced by pre- or postganglionic electrical stimulation of the pelvic nerve. 4. Nociceptin almost totally abolished the reflex component of the response to topical capsaicin (1 microg in 50 microl). 5. In the rat isolated bladder, submaximal contractions produced by electrical field stimulation were slightly reduced (25+/-4% inhibition) by 1 microM nociceptin. Nociceptin did not affect the contraction of the rat bladder induced by acetylcholine (10 microM) or ATP (1 mM). 6. These findings indicate that nociceptin exerts a naloxone-resistant suppression of the volume-evoked micturition reflex which involves inhibition of transmitter release from postganglionic bladder nerves. An inhibitory effect on bladder afferent nerves is also suggested.  相似文献   

5.
We studied the involvement of periventricular and hypothalamic angiotensinergic and cholinergic pathways in osmotically induced arginine vasopressin (AVP) release into the blood. In conscious Wistar rats, i.c.v. injections of 0.2, 0.3 and 0.6 M hyperosmolar saline (5 microl) resulted in concentration-dependent increases in AVP release (5.2 +/- 1.5, 10.6 +/- 2.2 and 18.0 +/- 2.2 pg/ml, respectively, vs. 2.0 +/- 0.1 in controls). The two lower saline concentrations did not affect arterial blood pressure (non-pressure-associated AVP release), whereas 0.6 M saline induced increase in blood pressure (pressure-associated AVP release). In the first set of experiments, periventricular angiotensin AT1, muscarinic or nicotinic receptors were blocked by i.c.v. administration of losartan (10 nmol), atropine (100 nmol) or hexamethonium (100 nmol), respectively, before i.c.v. hyperosmolar saline injections. Losartan significantly reduced the 0.2 M and 0.3 M, but not the 0.6 M, saline-induced increase in AVP release. The 0. 3 M saline-induced AVP release was blocked by atropine and hexamethonium, whereas the 0.6 M saline-induced AVP release was blocked by atropine only. In the second set of experiments, losartan (4 nmol), atropine (200 nmol) or hexamethonium (200 nmol) was injected bilaterally into the paraventricular nucleus before i.c.v. hyperosmolar saline injections. Losartan reduced 0.3 M and potentiated 0.6 M saline-induced AVP release. On the other hand, atropine and hexamethonium significantly reduced both 0.3 and 0.6 M saline-induced AVP release. We conclude that afferents arising from periventricular osmosensitive neurons to the hypothalamic paraventricular nucleus, which are involved in non-pressure-associated osmotically induced AVP release, are both angiotensinergic and cholinergic, whereas those mediating pressure-associated AVP release are cholinergic in nature.  相似文献   

6.
1. The biphasic nature of the potent modulatory action of interleukin-2 (IL-2) on hippocampal acetylcholine (ACh) release was investigated by use of brain slice superfusion. 2. Both the potentiating (10(-13) M) and inhibitory (10(-9) M) effects of IL-2 on hippocampal ACh release were stimulation-dependent and were blocked by a neutralizing IL-2 receptor antibody, suggesting the activation of typical IL-2 receptors in both cases. 3. Tetrodotoxin (TTX: 10 microM) failed to block the potentiation of ACh release induced by a very low concentration of IL-2 (10(-13) M) suggesting a direct effect on cholinergic nerve terminals. 4. In contrast, the inhibitory effect seen at a higher concentration (10(-9) M) was TTX-sensitive, and hence indicative of an indirect action. 5. To establish the nature of this intermediate mediator, blockers of nitric oxide synthesis, and of opioid and gamma-aminobutyric acid (GABA) receptors were used. Only GABAA and GABAB receptor antagonists altered the inhibitory action of IL-2, suggesting the participation of GABA as mediator. 6. Taken together, these results provide further evidence for the potent role of IL-2 in the modulation of cholinergic function in the rat hippocampus.  相似文献   

7.
The effects of the antiparkinsonian drugs budipine and biperiden on spontaneous and electrically evoked release of dopamine (DA), acetylcholine (ACh), GABA or noradrenaline (NA) were studied in caudate nucleus or cortex slices, respectively, of the rabbit brain. Whereas both drugs (1-10 microM) strongly increased spontaneous [3H]outflow in caudate nucleus slices preincubated with [3H]DA, budipine inhibited but biperiden facilitated the evoked DA release. In the presence of the DA-reuptake inhibitor nomifensine, a significant part of the budipine-induced basal [3H] outflow consisted of unmetabolized DA. Synaptosomal high-affinity uptake of [3H]DA was only weakly affected by budipine and biperiden (IC50 values, 11 and 9 microM, respectively). Budipine enhanced also basal [3H]outflow from cortex slices prelabeled with [3H]NA, however this outflow consisted mainly of NA metabolites even in the presence of cocaine. The evoked release of [3H]ACh in rabbit caudate nucleus slices preincubated with [3H] choline was almost unaffected by budipine but enhanced by biperiden in the absence of further drugs. In the presence of nomifensine, however, budipine inhibited, but biperiden still enhanced, the evoked ACh release. Moreover, both drugs showed antimuscarinic properties in the presence of the ACh esterase inhibitor physostigmine, i.e., they facilitated the evoked ACh release, exhibiting pA2 values of about 6.9 (budipine) and 8.3 (biperiden). Addition of the D2 receptor antagonist domperidone diminished all inhibitory effects of budipine on the evoked ACh release. The evoked overflow of [3H] in caudate nucleus slices preincubated with [3H]GABA was reduced by both budipine and biperiden. It is concluded that both anticholinergic and indirect dopaminomimetic properties contribute to the antiparkinsonian effects of budipine, whereas biperiden exhibits mainly anticholinergic effects. Moreover, both drugs might disinhibit GABA controlled neurons in the central nervous system.  相似文献   

8.
The alpha 7-nicotinic receptor (nAChR)-selective agonist choline and nAChR-subtype-selective antagonists led to the discovery that activation of both alpha 7 and alpha 4 beta 2 nAChRs located in CA1 interneurons in slices taken from the rat hippocampus facilitates the tetrodotoxin (TTX)-sensitive release of gamma-aminobutyric acid (GABA). Experiments carried out in cultured hippocampal neurons not only confirmed that preterminal alpha 7 and alpha 4 beta 2 nAChRs modulate the TTX-sensitive release of GABA, but also demonstrated that evoked release of GABA is reduced by rapid exposure of the neurons to acetylcholine (ACh, 10 microM-1 mM) in the presence of the muscarinic receptor antagonist atropine (1 microM). This effect of ACh, which is fully reversible and concentration-dependent, is partially blocked by superfusion of the cultured neurons with external solution containing either the alpha 7-nAChR-selective antagonist methyllycaconitine (MLA, 1 nM) or the alpha 4 beta 2-nAChR-selective antagonist dihydro-beta-erythroidine (DH beta E, 100 nM). A complete blockade of ACh-induced reduction of evoked release of GABA was achieved only when the neurons were perfused with external solution containing both MLA and DH beta E, suggesting that activation of both alpha 7 and alpha 4 beta 2 nAChRs modulates the evoked release of GABA from hippocampal neurons. Such mechanisms may account for the apparent involvement of nAChRs in the psychological effects of tobacco smoking, in brain disorders (e.g., schizophrenia and epilepsy), and in physiological processes, including cognition and nociception.  相似文献   

9.
1. Nicotinylalanine, an inhibitor of kynurenine metabolism, has been shown to elevate brain levels of endogenous kynurenic acid, an excitatory amino acid receptor antagonist. This study examined the potential of nicotinylalanine to influence excitotoxic damage to striatal NADPH diaphorase (NADPH-d) and gamma-aminobutyric acid (GABA)ergic neurones that are selectively lost in Huntington's disease. 2. A unilateral injection of the N-methyl-D-aspartate (NMDA) receptor agonist, quinolinic acid, into the rat striatum produced an 88% depletion of NADPH-d neurones. Intrastriatal infusion of quinolinic acid also produced a dose-dependent reduction in striatal GABA content. 3. Nicotinylalanine (2.3, 3.2, 4.6, 6.4 nmol 5 microl(-1), i.c.v.) administered with L-kynurenine (450 mg kg(-1)), a precursor of kynurenic acid, and probenecid (200 mg kg(-1)), an inhibitor of organic acid transport, 3 h before the injection of quinolinic acid (15 nmol) produced a dose-related attenuation of the quinolinic acid-induced loss of NADPH-d neurones. Nicotinylalanine (5.6 nmol 5 microl(-1)) in combination with L-kynurenine and probenecid also attenuated quinolinic acid-induced reductions in striatal GABA content. 4. Nicotinylalanine (4.6 nmol, i.c.v.), L-kynurenine alone or L-kynurenine administered with probenecid did not attenuate quinolinic acid-induced depletion of striatal NADPH-d neurones. However, combined administration of kynurenine and probenecid did prevent quinolinic acid-induced reductions in ipsilateral striatal GABA content. 5. Injection of nicotinylalanine, at doses (4.6 nmol and 5.6 nmol i.c.v.) which attenuated quinolinic acid-induced striatal neurotoxicity, when combined with L-kynurenine and probenecid produced increases in both whole brain and striatal kynurenic acid levels. Administration of L-kynurenine and probenecid without nicotinylalanine also elevated kynurenic acid, but to a lesser extent. 6. The results of this study demonstrate that nicotinylalanine has the potential to attenuate quinolinic acid-induced striatal neurotoxicity. It is suggested that nicotinylalanine exerts its effect by increasing levels of endogenous kynurenic acid in the brain. The results of this study suggest that agents which influence levels of endogenous excitatory amino acid antagonists such as kynurenic acid may be useful in preventing excitotoxic damage to neurones in the CNS.  相似文献   

10.
1. Previous studies in our laboratory have shown that the synthetic xanthine analogue denbufylline, a selective type 4 phosphodiesterase (PDE-4) inhibitor, is a potent activator of the hypothalamo-pituitary-adrenal (HPA) axis when given orally or intraperitoneally (i.p.) to adult male rats. This paper describes the results of experiments in which well established in vivo and in vitro methods were used to compare the effects of denbufylline on HPA function with those of two other selective PDE-4 inhibitors, rolipram and BRL 61063 (1,3-dicyclopropylmethyl-8-amino-xanthine). For comparison, parallel measurements of the immunoreactive- (ir-) luteinising hormone (LH) were made where appropriate. 2. When injected intraperitoneally, rolipram (40 and 200 micrograms kg-1, P < 0.005), denbufylline (0.07-0.6 microgram kg-1, P < 0.05) and BRL 61063 (30 micrograms kg-1, P < 0.005) each produced marked rises in the serum ir-corticosterone concentrations. However, lower doses of rolipram (1.6 and 8 micrograms kg-1) and BRL 61063 (0.25-6 micrograms kg-1) were without effect (P > 0.05). By contrast, intracerebroventricular (i.c.v.) injection of rolipram (8 ng-1 micrograms kg-1) or denbufylline (50 ng-1 microgram kg-1) failed to influence the serum ir-corticosterone concentration. BRL 61063 (8-120 ng kg-1, i.c.v.) was also ineffective in this regard although at a higher dose (1 microgram kg-1, i.c.v.) it produced a small but significant (P < 0.05) increase in ir-corticosterone release. Denbufylline also increased the serum ir-LH concentration when given peripherally (0.2-0.6 microgram kg-1, i.p., P < 0.05) or centrally (100 ng kg-1, i.c.v., P < 0.05) but rolipram (1.6-200 micrograms kg-1, i.p. or 8 ng-1 microgram kg-1, i.c.v.) and BRL 61063 (0.25-30 micrograms kg-1, i.p. or 1 ng-1 microgram kg-1, i.c.v.) did not (P > 0.05). 3. In vitro rolipram (10 microM, P < 0.01), denbufylline (1 mM, P < 0.001) and BRL 61063 (1 and 10 microM, P < 0.05) stimulated the release of corticotrophin releasing hormone (ir-CRH-41) but lower concentrations of the drugs were without effect as also was BRL 61063 at 100 microM (P > 0.05); the rank order of potency was thus BRL 61063 > rolipram > denbufylline. The adenylyl cyclase activator forskolin (100 microM, P < 0.01) also stimulated the release of ir-CRH-41, producing effects which were additive with those of rolipram and denbufylline but not with those of BRL 61063. The secretory responses to forskolin (100 microM) were accompanied by a highly significant increase in the cyclic AMP content of the hypothalamic tissue (P < 0.005). Rolipram (10 microM) also significantly (P < 0.05) elevated the hypothalamic cyclic AMP but denbufylline (10 mM) and BRL 61063 (10 microM) did not. However, all three PDE-inhibitors potentiated the rise in cyclic AMP induced by forskolin (P < 0.05). None of the drugs tested, alone or in combination, modified the release of arginine vasopressin (ir-AVP) from the hypothalamus. 4. Rolipram (100 microM), denbufylline (100 microM) and BRL 61063 (100 microM) stimulated the release of corticotrophin (ir-ACTH) from pituitary tissue in vitro (P < 0.05) but in lower concentrations they were without significant effect. In addition, rolipram (10 microM, P < 0.05), denbufylline (0.1 microM, P < 0.05) and BRL 61063 (10 microM, P < 0.05) potentiated the significant (P < 0.05) rises in ir-ACTH secretion induced by forskolin (100 microM). Forskolin (100 microM) also produced a highly significant increase (P < 0.01) in the tissue cyclic AMP content which was further potentiated by rolipram (10 microM), denbufylline (10 microM) and BRL 61063 (10 microM) which, alone did not affect the cyclic AMP content of the tissue. 5. Since both denbufylline and BRL 61063 possess significant adenosine A1 receptor blocking activity, further studies examined the potential influence of these receptors on the secretion in vitro of CRH-41, AVP and ACTH. The release of ir-CRH-41 was increased significantly by adenosine deaminase (ADA, 5microml-1, P<0.05) and the A1-receptor antagonist, 1,3-dicyclopropyl-8-cyclopentylxanthine (DPCPX, 0.1-10nM, P<0.05). The responses to ADA were abolished by the A1 receptor agonist N6-cyclo-hexyladenosine (CHA, 100nM, P<0.05) which alone had no significant effect on ir-CRH-41 release. ADA (0.1-10microml-1) and DPCPX (1nM) had weak stimulant and inhibitory effects, respectively, on the release of ir-ACTH from the pituitary gland while CHA (0.1-10nM) was without effect. Ligand binding studies with [3H]-DPCPX as a probe demonstrated the presence of specific high affinity A1 binding sites in the hypothalamus (Kd=0.7nM; Bmax=367+/-32fmolmg-1 protein) and in the hippocampus (Kd=1nM; Bmax=1165 +/-145fmolmg-1 protein). In both tissues binding of the ligand was displaced by CHA (IC50=1nM (hypothalamus) and 2nM (hippocampus)), BRL 61063 (IC50=80nM (hypothalamus) and 100nM (hippocampus)) and denbufylline (IC50=5microM (hypothalamus) and 9microM(hippocampus)) but not by rolipram. 6.The results suggest that rolipram, denblufylline and BRL 61063 stimulate the HPA axis in the rat, acting at the levels of both the hypothalamus and the pituitary gland. Their actions may be explained, at least in part, by inhibition of PDE-4 but additional actions including blockade of hypothalamic adenosine A1 receptors by denbufylline and BRL 61063 cannot be excluded.  相似文献   

11.
The benzodiazepine receptor antagonist flumazenil (2.5-20 mg/kg i.p.) increased acetylcholine (ACh) release by up to 85% in the hippocampus of freely moving rats. In contrast, the benzodiazepine receptor full agonist diazepam (2.5-10 mg/kg i.p.) decreased ACh release up to a maximum of 45% in the same brain area. Injection of flumazenil (10 pmol) or diazepam (10 pmol) into the medial septum increased (95%) or reduced (50%), respectively, ACh release in the hippocampus. The maximum effect produced by those drugs was of the same magnitude as that observed after systemic injection. The changes in hippocampal cholinergic function elicited by activation and blockade of benzodiazepine receptors in the medial septum may thus play a crucial role in the alterations of the cognitive processes elicited by benzodiazepine receptor ligands.  相似文献   

12.
Chlorisondamine (CHL) blocks behavioural responses to nicotine for several weeks or months in rats. Persistent blockade has also been demonstrated ex vivo, in assays of nicotine-evoked striatal dopamine release. Central administration of [3H]-CHL leads to long-term retention of radiolabel in nigrostriatal dopaminergic neurons and in few other cell groups. We investigated whether an analogous blockade also occurs in noradrenergic neurons in the brain and in cultured pheochromocytoma (PC12) cells, which have a similar noradrenergic phenotype. Administration of CHL (10 mg kg(-1) s.c. or 10 microg i.c.v.), 21 days prior, resulted in a near-total block of nicotine-evoked release of hippocampal [3H]-noradrenaline ([3H]-NA) from superfused rat synaptosomes; NMDA-evoked [3H]-NA release was unaffected. Three weeks after administration of [3H]-CHL (10 microg i.c.v.), preferential accumulation of radiolabel was observed in the locus coeruleus, which provides the entire noradrenergic innervation to hippocampus, as well as in previously noted structures. In rat pheochromocytoma (PC12) cells, nicotine evoked [3H]-NA release (EC50 approximately 30 microM). This effect was blocked by co-incubation with mecamylamine (10 microM) or CHL (1 microM) but was not affected by alpha-bungarotoxin. As in the hippocampus, the nicotinic agonist cytisine was at least as efficacious as nicotine. Acute exposure of PC12 cells to CHL 10 or 100 microM (but not 1 microM), followed by 90 min wash-out, almost completely blocked release evoked by 30 microM nicotine. More prolonged (24 h) exposure to CHL 100 microM (but not 1 or 10 microM), followed by 3 days of wash-out, partially inhibited release evoked by nicotine, leaving responses to high K+ unchanged. A significant (30%) reduction was also seen 5 days after exposure. We conclude that persistent nicotinic blockade by CHL is neither restricted to mesostriatal dopamine neurons, nor to the CNS, nor to neurons possessing the same nicotinic receptor pharmacology. In addition, the persistent blockade does not appear to result from an acute blocking action, but may be dependent upon intracellular accumulation of the antagonist.  相似文献   

13.
The effect of the gamma-aminobutyric acid uptake inhibitor tiagabine hydrochloride was studied on electrical responses in cortical wedges prepared from 20-30 day-old, audiogenic seizure-prone DBA/2 mice. Perfusion of tiagabine (50 microM) for 15 min, evoked large, slow depolarizations with a frequency of 6-8/h which persisted for 4-5 h. The GABA(A) receptor antagonists, bicuculline (10 microM) and picrotoxin (100 microM), inhibited established depolarizations. These depolarizations were also calcium-dependent and blocked by tetrodotoxin. The non-opioid antitussive, dextromethorphan, which has been shown to inhibit glutamate release, irreversibly blocked the depolarizations. Conversely, 4-aminopyridine (50 microM), a potassium channel antagonist, markedly potentiated the responses. The NMDA receptor antagonist, 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, had no effect on the depolarizations at concentrations up to 100 microM but the AMPA/kainate receptor antagonist, 6,7-dinitroquinoxaline-2.3-dione at high concentrations (100 and 200 microM), reversibly decreased the frequency without affecting the amplitude. It is concluded that the tiagabine-induced depolarizations in this in vitro preparation were initiated through GABA(A) receptors leading, possibly, to a release of excitatory amino acids.  相似文献   

14.
The release of cholecystokinin-like immunoreactivity (CCK-LI) in human brain was investigated using synaptosomes prepared from neocortical specimens removed during neurosurgery. CCK-LI basal release from superfused synaptosomes was increased 3 to 4-fold during depolarization with 15 mM KCI. The K(+)-evoked overflow of CCK-LI was strictly Ca(++)-dependent. The gamma-aminobutyric acidB (GABA(B)) receptor agonist (-)baclofen (0.3-100 microM) inhibited CCK-LI overflow in a concentration-dependent manner (EC50 = 2.20 microM; maximal effect: 45%). The novel GABA(B) receptor ligand CGP 47656 mimicked (-)baclofen (EC50 = 2.45 microM; maximal effect: 50%), whereas the GABA(A) agonist muscimol was ineffective up to 100 microM. The inhibitory effect of 10 microM (-)baclofen on the CCK-LI overflow was concentration-dependently prevented by two selective GABA(B) receptor antagonists, CGP 35348 (IC50 = 13.91 microM) and CGP 52432 (IC50 = 0.08 microM). The effect of 10 microM CGP 47656 was abolished by 1 microM CGP 52432. In experiments on [3H]GABA release, CGP 47656 behaved as an antagonist at the GABA(B) autoreceptors: added at 10 microM, it prevented the inhibitory effect of 10 microM (-)baclofen on the K+ (15 mM)-evoked release of [3H]GABA from human synaptosomes. We conclude that 1) the release of CCK-LI evoked from human brain tissue appears of neuronal origin; 2) the CCK-releasing terminal possess inhibitory presynaptic GABA(B) receptors; 3) these receptors differ pharmacologically from human neocortex GABA(B) autoreceptors, which are CGP 35348-insensitive (Fassio et al., 1994) but can be blocked by CGP 47656; 4) because cholecystokinin has been implicated in anxiety, the GABA(B) receptors here characterized may represent targets for novel anxiolytic agents.  相似文献   

15.
The roles of endogenous serotonin (5-HT) and 5-HT receptor subtypes in regulation of acetylcholine (ACh) release in frontal cortex of conscious rats were examined using a microdialysis technique. Systemic administration (1 and 3 mg/kg, i.p.) of the 5-HT-releasing agent p-chloroamphetamine (PCA) elevated ACh output in a dose-dependent manner. Depletion of endogenous 5-HT by p-chlorophenylalanine significantly attenuated the facilitatory effect of PCA on ACh release. The PCA (3 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (10 mg/kg, i.p.; 100 microM), 5-HT(1A/1B)/beta-adrenoceptor antagonists (-)-pindolol (8 mg/kg, i.p.) and (-)-propranolol (150 microM), 5-HT(2A/2C) antagonist ritanserin (1 mg/kg, i.p.; 10 microM) and 5-HT3 antagonist ondansetron (1 mg/kg, i.p.; 10 microM) failed to significantly modify the effect of PCA. These results suggest that PCA-induced enhancement of 5-HT transmission facilitates ACh release from rat frontal cortex at least in part through 5-HT4 receptors.  相似文献   

16.
The effect of i.c.v. administration of Evans blue to sound sensitive DBA/2 mice and to genetically epilepsy-prone rats was studied. In mice, Evans blue (3.3-52 nmol) induced: hyperlocomotion, wild running, scratching, clonic muscle spasms, tonic seizure (latency 10-45 min), followed by death or recovery. The CD50 value for clonic seizures for Evans blue was 35(23-53) nmol. Pretreatment (45 min) with Evans blue (13-52 nmol, i.c.v.) dose-dependently reduced the incidence of sound-induced seizures in DBA/2 mice (ED50 value against clonic seizures = 30 [15-58] nmol, i.c.v). In rats, Evans blue (104 nmol, i.c.v.) induced electroencephalographic seizures in the hippocampus and cortex and behavioural limbic seizures with a latency of 15-20 min. A reduction in the mean score (from 5 to 2-3) for behavioural seizures was observed which lasted for 4-5 days in rats electrically-kindled daily in the hippocampal CA3 subsector. Sound-induced clonic seizures in kindled and non-kindled rats were reduced for 3-4 days after administration of Evans blue (104 nmol, i.c.v.).  相似文献   

17.
The effects of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1-300 microM) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100-300 microM) and AMPA (30-300 microM), however, subsequently inhibited acetylcholine release. NMDA (100 microM)-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1-10 microM), whereas the 10 microM AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-30 microM). NMDA (100 microM)-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor L-nitroarginine (1-100 microM). Tetrodotoxin (0.5 microM) prevented the facilitatory effect of 3 microM NMDA and AMPA, but left unchanged that of 30 microM NMDA and 100 microM AMPA. Acetylcholine release from synaptosomes was stimulated by KCl (7.5-100 mM) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 mM KCl effect at 1 microM and 0.01 microM, but were ineffective at 100 microM and 10 microM, respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 microM NMDA and 0.01 microM AMPA were antagonized by CPP (0.0001-1 microM) or dizocilpine (0.0001-10 microM) and by CNQX (0.001-1 microM), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and postsynaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

18.
In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band (MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral microdialysis. Perfusion with N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the MS/vDB caused an incrase in ACh output in the hippocampus. This increase was completely blocked by coadministration of their respective antagonists D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Perfusion in the MS/vDB with kainic acid also caused an increase in ACh output, but coadministration of CNQX attenuated the increase only partially. Perfusion with D-AP5 and CNQX alone in the septal probe did not affect ACh output from the hippocampus. In contrast to the results of septal administration of NMDA and AMPA, local perfusion with the same drugs in the hippocampus caused a decrease in ACh output. Whereas the results of septal administration of drugs indicate that septal cholinergic neurons probably receive excitatory glutamatergic innervation, the decrease in ACh output caused by administration of NMDA and AMPA in the hippocampus is poorly understood.  相似文献   

19.
By loading cells in culture with acetylcholine (ACh) we have characterized a calcium-dependent release mechanism and shown that it was expressed independently of synthesis or storage of ACh. (Isra?l et al., 1994, Neurochemistry International 37, 1475-1483; Falk-Vairant et al., 1996a, Proc. Natl. Acad. Sci. U.S.A. 93, 5203-5207; Falk-Vairant et al., 1996b, Neuroscience 75, 353-360; Falk-Vairant et al., 1996c, Journal of Neuroscience Research 45, 195-201). The transmitter loading procedure was applied to two other transmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu). We could then study the specificity of the release mechanism for the three transmitters in a variety of cell lines, including neural-derived cells. Four different calcium-dependent release phenotypes were identified: two were specific for ACh or GABA, and two co-released two transmitters ACh and GABA but not Glu, or ACh and Glu but not GABA. We conclude that release mechanisms having different specificities are expressed by the cell lines studied, they become functional after loading the cells with the relevant transmitters. These observations will help the identification of proteins controlling the specificity of release, and provide an interesting model for pharmacological studies.  相似文献   

20.
1. The release of endogenous gamma-aminobutyric acid (GABA) and glutamic acid in the human brain has been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery to reach deeply located tumours. 2. The basal outflows of GABA and glutamate from superfused synaptosomes were largely increased during depolarization with 15 mM KCl. The K(+)-evoked overflows of both amino acids were almost totally dependent on the presence of Ca(2+) in the superfusion medium. 3. The GABAB receptor agonist (-)-baclofen (1, 3 or 10 microM) inhibited the overflows of GABA and glutamate in a concentration-dependent manner. The inhibition caused by 10 microM of the agonist ranged from 45-50%. 5. The effect of three selective GABAB receptor antagonists on the inhibition of the K(+)-evoked GABA and glutamate overflows elicited by 10 microM (-)-baclofen was investigated. Phaclofen antagonized (by about 50% at 100 microM; almost totally at 300 microM) the effect of (-)-baclofen on GABA overflow but did not modify the inhibition of glutamate release. The effect of (-)-baclofen on the K(+)-evoked GABA overflow was unaffected by 3-amino-propyl (diethoxymethyl)phosphinic acid (CGP 35348; 10 or 100 microM); however, CGP 35348 (10 or 100 microM) antagonized (-)-baclofen (complete blockade at 100 microM) at the heteroreceptors on glutamatergic terminals. Finally, [3-[[(3,4-dichlorophenyl) methyl]amino]propyl] (diethoxymethyl) phosphinic aid (CGP 52432), 1 microM, blocked the GABAB autoreceptor, but was ineffective at the heteroreceptors. The selectivity of CGP 52423 was lost at 30 microM, as the compound, at this concentration, inhibited completely the (-)-baclofen effect on both GABA and glutamate release. 5. It is concluded that GABA and glutamate release evoked by depolarization of human neocortex nerve terminals can be affected differentially through pharmacologically distinct GABAB receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号