共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于转换坐标卡尔曼滤波算法的雷达目标跟踪 总被引:8,自引:0,他引:8
在三维空间中推导了转换坐标卡尔曼滤波算法,得到了在目标真实位置已知的条件下去偏转换测量值误差方差的表达式及在测量值已知条件下去偏转换测量值误差方差的表达式,用此算法进行了雷达目标跟踪仿真,取得了较好的跟踪效果。 相似文献
3.
雷达机动目标跟踪的卡尔曼粒子滤波算法 总被引:1,自引:0,他引:1
为解决不敏粒子滤波算法对雷达机动目标跟踪实时性差和跟踪起始阶段收敛慢的问题,引入卡尔曼粒子滤波算法.通过坐标转换将实际的极坐标雷达观测数据转换为直角坐标数据,然后用线性最优的卡尔曼滤波器估计粒子状态先验概率密度,最后用非线性最优的粒子滤波器精确估计目标状态后验概率.仿真实验表明,与不敏粒子滤波相比,卡尔曼粒子滤波以牺牲较少精度(减少约6%)的代价,实现机动目标跟踪的实时性(约为前者的1/5),起始阶段收敛性更好. 相似文献
4.
基于卡尔曼滤波器的运动目标跟踪算法 总被引:3,自引:0,他引:3
为了有效解决运动目标遮挡时目标信息容易丢失从而导致跟踪失败的问题,提出一种基于卡尔曼滤波器的运动目标跟踪算法。该算法首先利用高斯混合模型的背景差分法,结合空间邻域的相关性信息得到运动目标图像,然后通过建立帧间关系矩阵将跟踪情况分为5种状态分别进行处理,这5种状态是新目标出现、目标匹配、目标遮挡、目标分离和目标消失。采用卡尔曼滤波器预测目标参数,建立目标在下一帧中的预测信息。当运动目标相互遮挡时,在卡尔曼滤波器预测区域内采用交叉搜索法实现多个运动目标的精确匹配。通过多个视频序列测试,该算法能够获得良好的跟踪结果。 相似文献
5.
6.
7.
着重分析了米波雷达进行目标跟踪所普遍存在的一些问题,对跟踪滤波器性能与误差作了分析,指出观测的不确定性是导致跟踪发散的主要原因。最后给出了提高滤波预测精度的一些解决方法。 相似文献
8.
9.
10.
基于逻辑切换的改进强跟踪卡尔曼滤波器 总被引:5,自引:0,他引:5
针对线性随机系统提出了一种改进强跟踪卡尔曼滤波器(MSTKF).通过改变强跟踪滤波器的多重时变渐消因子,MSTKF在卡尔曼滤波和强跟踪滤波两种工作状态之间切换.当卡尔曼滤波不能有效跟踪突变状态时,MSTKF切换为可变弱化因子的强跟踪滤波.数值仿真实例显示了本方法的有效性. 相似文献
11.
12.
提出了一种结合连续自适应均值漂移(Camshift)与卡尔曼(Kalman)滤波的目标跟踪算法,针对目标受干扰情况,对两种算法的跟踪结果进行线性的加权,从而得到目标的最终位置。实验结果显示,该方法具有良好的目标跟踪效果,且具有很强的稳健性。 相似文献
13.
14.
Meanshift算法在对快速运动的目标进行跟踪时容易丢失目标,并且在目标被遮挡时,也容易造成跟踪失败,跟踪的过程中跟踪框不能随着运动目标的大小变化而变化.提出一种基于Meanshift运动目标跟踪算法的改进算法.该算法基本思想是采用改进的三帧差分法对运动目标区域进行提取,求得跟踪框轮廓,同时用Meanshift算法对运动目标进行跟踪,获得目标最大概率区域,将该区域中心作为跟踪框的中心.跟踪过程中通过巴氏系数判断是否目标被遮挡,若被遮挡则调用Kalman滤波进行预测跟踪.实验结果表明,该算法能够快速、准确地跟踪目标. 相似文献
15.
16.
17.
基于视频序列的运动目标追踪算法 总被引:1,自引:0,他引:1
介绍了一种对视频序列中运动目标追踪的实现算法,该算法在运动目标检测的基础上,融合了卡尔曼滤波和Meanshift算法实现对快速移动目标的追踪。卡尔曼滤波对下一帧目标可能出现的位置做出估计,Meanshift迭代算子在估计出的区域对目标精确定位。经实际验证其有效地克服了传统Meanshift算法对于快速移动物体追踪可能出现的丢失目标的问题,目标追踪效果明显提高。 相似文献
18.
19.