首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对AgCuNiSi合金丝材进行扁丝轧制,研究了AgCuNiSi扁丝轧制过程中宽展行为以及组织与性能的演变。结果表明,轧制法可以获得尺寸波动很小、高精度的扁丝;AgCuNiSi扁丝的宽展量可以用M. Kazeminezhad宽展公式来预测;扁丝轧制过程中对第二相颗粒有破碎和弥散分布作用;随着压下率的增加,硬度分布更加均匀,由不均匀变形逐渐转变为均匀变形。通过压下率的控制,可以获得均匀变形的AgCuNiSi扁丝。  相似文献   

2.
铜包铝复合扁线轧制变形行为的数值模拟与实验研究   总被引:1,自引:0,他引:1  
采用三维刚塑性有限元法,研究铜包铝复合线材由圆断面到扁断面的平辊轧制变形行为及其对主要工艺参数的影响,并对模拟结果进行实验验证.结果表明:铜包铝圆线平辊轧制的宽展率和伸长率与压下率之间存在线性关系;当压下率为17.4%和29.4%时,摩擦因数对铜包铝扁线宽展率的影响很小;当压下率为43%时,随摩擦因数的增加宽展率增大;轧辊直径增大,扁线宽展率呈增大趋势,铜层分布的均匀性提高,但影响较小;在总压下率一定时,采用尽可能少的压下道次可使扁线获得更大的宽展率和更均匀的铜层分布;有限元计算结果与实验结果具有较好的一致性.  相似文献   

3.
铜包铝复合棒材平辊轧制宽展变形行为   总被引:2,自引:0,他引:2  
对铜包铝复合棒材平辊冷轧时的金属流动进行数值模拟和实验研究.结果表明:由圆断面至扁断面的第一道次平辊轧制中侧边以变形宽展为主;在后续道次的平辊轧制过程中,滑动宽展的影响增大,侧边变形宽展的影响减小;当压下率为13.3%~26.7%时,摩擦因数对铜包铝棒材宽展率的影响较小,而当压下率大于33.3%时,摩擦因数对宽展的影响增大;铜包铝复合棒材的最大轧制压力在轧制入口端,断面上存在一条"X"状的等效应变带.实验结果与有限元分析结果具有良好的一致性.采用合适的轧制工艺,可获得铜包覆层分布均匀、铜铝复合界面无裂纹和分层、表面质量好的扁排.  相似文献   

4.
基于软件MSC.Marc建立了高锰无磁钢在不同变形参数下异步轧制过程的三维有限元模型。利用该模型对异步轧制过程进行了数值模拟,分析了异速比、压下量和初轧温度对轧件平均宽展的影响规律。结果表明:轧件平均宽展随着压下量的增大和初轧温度的升高而增大;随着轧制异速比的增大,平均宽展先减小后增大。在压下量为20%、30%、40%时,平均宽展最小值对应的异速比为1.2,但当压下量增大至50%时,平均宽展最小值偏移到异速比为1.3处。基于以上分析结果,将异速比、压下量和初轧温度对宽展的影响规律引入芝原宽展公式,并对其进行了修正,使用修正后的公式进行了计算,计算结果与模拟结果相关性较好。  相似文献   

5.
采用多层喷射沉积工艺制备SiCp/Al-Fe-V-Si复合材料,并分别通过挤压后轧制和热压后轧制工艺制备了板材,分析了复合材料不同状态下的显微组织、物相和力学性能,并研究在轧制过程中复合材料密度和硬度的变化规律。结果表明:挤压后轧制和热压后轧制均能有效致密沉积坯。与挤压后再轧制相比,热压后再轧制材料组织更均匀细小,力学性能更优秀。挤压后再轧制板材抗拉强度为535 MPa,伸长率为4.0%,压下25%前,挤压坯的密度和硬度随之降低;当压下25%时,密度和硬度升高。热压后轧制板材抗拉强度达580 MPa,伸长率达6.3%,压下量低于10%时,热压坯密度与硬度随压下量升高;压下10%至40%,密度和硬度下降;压下量高于40%后,密度与硬度升高。对于两种材料,随着压下量的增加,轧制过程中密度与硬度的变化规律都一致。  相似文献   

6.
李高盛  余伟  蔡庆伍 《轧钢》2018,35(3):13-18
采用有限元方法建立了厚板轧制的刚塑性有限元模型,以研究在厚板轧制过程中引入厚度方向上的温度梯度对钢板芯部变形的影响。并与传统均温轧制进行对比,研究了差温轧制对钢板头部变形与宽展的影响,以及在两种工艺下钢板厚度方向上应变分布的变化,分析了差温轧制条件下应变、压下量与板坯厚度之间的关系。结果表明,温度梯度轧制有利于增加坯料芯部变形,差温轧制钢板头部呈现单鼓形,而均温轧制钢板头部为双鼓形。均温轧制中心与表面宽展差值为差温轧制这一数值的16倍。随着板厚减薄,道次压下量增大,差温轧制钢板内部应变逐渐提高。但当道次压下率和板厚过大或过小时,差温轧制对中心应变的改善作用不明显。  相似文献   

7.
精密辊轧是航空发动机叶片的重要加工方式,其工艺参数难以确定,导致叶片成形效果难以控制。提出使用ABAQUS有限元仿真方法对辊轧过程进行模拟,通过改变辊轧压下量以及摩擦因数,研究压下量和摩擦因数对叶片成形结果的耦合影响,从而优化工艺参数,获得最优的参数设定。研究结果表明:随着摩擦因数的增加,该辊轧模型叶片的宽展整体增加,且所受轧制力与摩擦因数呈线性正相关;随着端口压下量的增加,叶片所受轧制力以及叶片宽展均有所提升,但当压下量增加超过0.06 mm时,轧制力以及宽展发生突增,叶片变形集中于边缘局部区域,不利于成形结果的精密控制。  相似文献   

8.
《塑性工程学报》2015,(6):91-97
采用有限元数值模拟方法,研究了矩形断面铜包铝复合铸坯轧制成形铜包铝扁排时的金属变形和流动规律,以及工艺参数对宽展率和铜层厚度比的影响。结果表明,变形区宽面铜层在压下方向主要为压应力状态,而在轧制方向主要为拉应力状态。变形区窄面铜层在压下方向主要为压应力状态,但存在局部拉应力区,在轧制方向主要为拉应力状态。窄面铜层的双向拉应力是导致该位置易发生开裂的主要原因。在所研究的轧制工艺参数中,单道次相对压下率对轧制宽展率和铜层厚度比的影响最大,而采用较大的轧辊直径不仅可以获得较大宽展,而且对铜层厚度比的影响较小,因而铜包铝复合棒坯轧制时,宜采用较大的轧辊直径,并合理控制轧制的道次压下率。通过实验验证,数值模拟的计算精度可满足工程要求。  相似文献   

9.
结合某厂U71Mn大方坯连铸生产条件,采用有限元软件MSC.Marc进行铸坯轻压下过程热力耦合有限元分析,研究了压下量和固相率对铸坯两相区和产生裂纹可能性的影响。结果表明,大方坯受表面压下作用的变形主要为宽展变形和延展变形,压下变形则较小;随着压下量的增大和固相率的增大,两相区面积缩小率逐渐增大,压下效果更佳;各种压下条件下铸坯宽展方向应变都在0.2%以内,不会产生裂纹,但高固相率更有利于减小裂纹倾向;最佳轻压下参数为固相率0.5~0.9,压下量为5 mm。  相似文献   

10.
以2.0 mm厚的7075铝合金搅拌摩擦拼焊板为研究对象,探讨搅拌摩擦焊接接头在温轧过程中的变形行为。通过OM、EBSD、硬度仪及拉伸试验对轧制前后不同厚度焊接接头的微观组织和力学性能进行检测。结果表明:随着轧制变形量的增大,各区域组织变得更均匀,当轧制总压下率为75%时,焊接接头的特征逐渐消失,焊缝区域的组织与母材的差异变小。同时,由于动态再结晶的作用使接头的组织更加均匀,焊接区与母材的力学性能差异变小,硬度趋于一致。轧制压下率为75%时,0.5 mm厚焊接接头的抗拉强度为269 MPa,伸长率为4.1%,可以满足后续的轧制工艺要求,能够保证张力轧制过程中不发生断带,保证轧制顺利进行。该研究为焊合区的轧制变形提供理论基础。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号