首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
在小型固定流化床催化裂化试验装置上考察了反应温度、剂油质量比和质量空速等操作条件对费-托合成轻馏分油催化裂化反应性能的影响。结果表明,在费-托合成轻馏分油反应过程中,随着反应温度的升高、剂油质量比的增大、质量空速的降低,产物中干气、液化气和焦炭的产率增加,汽油、柴油的产率降低。且随着反应温度、剂油质量比、质量空速的降低,汽油馏分中烯烃质量分数增加;随着温度的降低、剂油质量比和质量空速的提高,汽油馏分中异构烷烃的质量分数增加;高反应温度、高剂油质量比有利于汽油馏分中芳烃的生成,而且芳烃主要来自于小分子烯烃的环化脱氢反应,降低质量空速主要促进了汽油中大分子烷基芳烃的断侧链反应,对氢转移反应的影响不明显。  相似文献   

2.
 针对柴油碱洗脱酸精制易乳化、收率低的问题,研究了催化酯化脱酸的技术来替代柴油碱洗脱酸。考察了在固定床催化剂存在下,影响柴油酯化脱酸的因素,并评价了酯化脱酸技术的经济性。结果表明,反应温度、空速、醇/油质量比、甲醇水含量等是影响柴油酯化脱酸的重要因素。反应温度高、空速降低、加大醇/油质量比有利于酯化反应的进行。甲醇中水的质量分数低于5%时,对酯化反应影响大,随水含量的增加,脱酸率显著降低;水的质量分数在5%~10%范围,脱酸率不再随水含量的增加而变化。对胜华直馏柴油来说,在反应温度280~300℃、反应空速1.5h-1、醇/油质量比0.01条件下,脱酸效果明显。直馏柴油酯化脱酸比碱洗脱酸具有更好的经济效益。  相似文献   

3.
催化裂解汽油催化芳构化工艺的研究   总被引:17,自引:0,他引:17  
采用择形沸石催化剂和固定流化床反应装置模拟催化剂流化输送的流化床连续反应-再生循环过程,进行了催化裂解汽油催化芳构化反应。考察了催化剂及各种操作条件对芳构化反应的影响,并对催化芳构化的反应机理和工业应用前景进行了初步探讨。结果表明,在反应温度580℃、常压、进料质量空速2.5 h- 1 、剂油质量比10 和水油质量比0.25 的条件下,催化裂解汽油的芳烃质量分数可以从42.49% 提高到81.46%  相似文献   

4.
在小型固定流化床(FFB)装置上,考察了以Y和ZSM-5分子筛作为催化剂,温度、剂/油质量比对二异丙基萘裂化侧链断裂反应的影响。结果表明,二异丙基萘在分子筛催化剂上极易发生侧链断裂反应,生成萘、C1~C4烷基萘、四氢萘、烷基四氢萘和丙烯等低碳烯烃;较少量的二异丙基萘通过脱氢缩合生成菲、芘等三环以上多环芳烃甚至焦炭。由于扩散和吸附性能的影响,二异丙基萘侧链断裂反应与催化剂的孔径有关,并与催化剂B酸量密切相关。在B酸量较少、吸附性能适宜的ZSM-5催化剂上其侧链断裂反应选择性比Y催化剂的高。当反应温度在425~525℃、剂/油质量比在3~8范围,随着反应温度升高,或者剂/油质量比增加,脱氢缩合反应增强,而烷基侧链断裂反应选择性降低。  相似文献   

5.
在小型固定流化床催化裂化装置上,模拟催化裂解(DCC)工艺条件,考察质量空速、催化剂老化时间及催化剂上Ni含量对待生催化剂上积炭构成的影响。结果表明:在反应温度、剂油质量比不变的条件下,随质量空速的增大,待生催化剂上的焦炭量呈减少趋势,最终趋于定值(极限焦炭量),极限焦炭量为该反应温度下可汽提焦与附加焦量之和;附加焦与原料的残炭相关,在反应温度为565 ℃的条件下,有86.7%的原料残炭转化为焦炭;随着催化剂老化时间的增加,催化剂比表面积减小,附加焦与可汽提焦量之和减小,可汽提焦的量与催化剂的比表面积呈二次函数关系;在相同的质量空速下,随着催化剂上Ni含量的增加,待生催化剂上生焦量增加,且质量空速较低时,Ni含量的影响加大;在反应温度为565 ℃、剂油质量比为8、质量空速为4 h-1的条件下,可汽提焦占待生剂上焦炭总量的42.64%,比前期工作者得出的值提高约30百分点。  相似文献   

6.
以管输蜡油为原料,考察了重油催化裂解条件下反应温度、剂油质量比、质量空速和水油质量比等不同操作条件对产物分布、低碳烯烃和轻质芳烃收率的影响,得到适宜的反应条件为:反应温度560 ℃,剂油质量比6,质量空速2 h-1,水油质量比10。对比了大庆蜡油和管输蜡油在相同操作条件下发生裂化反应时低碳烯烃和轻质芳烃的收率,得出随着反应深度的加大,石蜡基原料的轻质芳烃收率增长速率更快,大剂油比条件下生产的轻质芳烃甚至更多, 可以兼顾多产低碳烯烃和轻质芳烃。讨论了催化裂化反应中轻质芳烃的生成与转化途径,当转化深度较小时,轻质芳烃的来源以芳烃迁移反应为主,随着转化深度的增大,烯烃环化脱氢生成轻质芳烃的速率逐渐超过芳烃迁移反应。  相似文献   

7.
利用丁二烯二聚体制取乙苯的研究   总被引:1,自引:1,他引:0  
研究了Pt/Al_2O_3催化剂在丁二烯二聚体脱氢制乙苯反应的反应性能,考察了反应温度、反应压力、空速以及原料配比等工艺条件对反应的影响。结果表明,经焙烧处理过的Pt/Al_2O_3催化剂对所研究的反应具有比较稳定和有效的催化作用,可使转化率保持在80%、乙苯的选择性保持在92%以上,反应温度和空速对反应影响较大,宜取355℃和0.6h ̄(-1)。  相似文献   

8.
使用工业脱氢催化剂,在温度580~635℃、水与甲乙苯质量比2.0~4.0、体积空速0.5~1.5h~(-1)、压力(a)30~101kPa的实验条件范围内,研究了工艺参数对甲乙苯脱氢制甲基苯乙烯反应的影响规律。结果表明:随着温度的升高,甲乙苯转化率提高,甲基苯乙烯选择性下降;随着水与甲乙苯配比的增加,转化率和选择性均上升;体积空速降低时,虽能提高转化率,但会使选择性降低;压力降低时,既可提高转化率,又有利于选择性的升高;适宜的工艺条件为压力(a)50kPa、温度620℃、水与甲乙苯质量比2.0、体积空速0.5h~(-1)。利用实验数据,对甲乙苯脱氢反应进行了动力学研究。假设并简化反应网络,根据不同反应机理提出3种可能的甲乙苯脱氢反应动力学模型,对模型进行统计学检验筛选后,确定双位吸附模型为最佳反应动力学模型,并估算了该模型的参数,可为反应器的设计和最佳操作条件的选择提供依据。  相似文献   

9.
Mo/HZSM-5 上甲烷非氧脱氢聚合(制苯)   总被引:3,自引:2,他引:3  
考察了焙烧温度、空速、反应前预处理和ZSM-5的硅铝比对甲烷非氧脱氢聚合反应在Mo/HZSM-5催化剂上的影响。结果表明,焙烧温度为500℃时,催化剂的活性和苯选择性均最好,当焙烧温度为750℃时,甲烷转化率和苯的选择性均有较大的下降。低空速对催化剂反应活性和稳定性均有利。ZSM-5的硅铝比和反应前预处理对催化剂的性能也有一定的影响。甲烷中添加氢气和氧气对甲烷非氧脱氢聚合不利,添加He气后,甲烷转化率、苯的选择性和催化剂稳定性有所提高  相似文献   

10.
《天然气化工》2020,(3):16-19
聚乙烯尾气回收工艺回收的氮气中含有少量的氢气,其不仅影响聚乙烯产品质量,还增加循环使用的安全隐患。采用微型管式催化剂评价装置,考察了反应条件(温度、空速、压力以及乙烷存在)对XNY-04型脱氢催化剂活性的影响。研究结果表明,当反应温度70~200℃、空速2000~3000h~(-1)、反应压力0.5~1.4MPa时,催化脱氢后的气体中氢的体积分数不大于0.1%,催化剂表现出优良的脱氢性能。  相似文献   

11.
 对丙烷脱氢反应进行了热力学分析,计算了不同温度下的标准平衡常数和不同条件下的平衡转化率,并通过实验研究了不同工艺条件对Pt-Sn-K/Al2O3催化剂活性的影响。结果表明:高温和低压有利于反应的进行,但温度过高会导致裂解等副反应增多,使丙烯选择性下降,压力过低会造成脱氢反应产生的积炭前身物增多,催化剂失活速率加快;低空速下物料在反应器中停留时间较长,高温裂解反应增多,导致丙烯选择性下降;提高氢烃比能够降低催化剂的积炭速率,但同时也会降低丙烷的转化率。  相似文献   

12.
在小型固定床反应器、美国Xytel公司ACE(R型)装置和提升管催化裂化装置(Riser unit,RU)上,以Marbon减压馏分油、中间基性质的混合油(85%管输VGO掺混15%管输VR,质量分数)和石蜡基性质的减压蜡油(VGO)掺减压渣油(VR)构成的混合油(70%大庆VGO掺混30%大庆VR,质量分数)为催化进料,考察了主要操作参数对骨架异构化反应的影响。研究表明,反应温度、剂/油质量比(m(Catalyst)/m(Oil))、催化剂上焦炭沉积状况、反应质量空速和蒸汽注入量等操作参数对催化裂化过程中的骨架异构化反应均有影响。催化裂化过程中骨架异构化反应是放热过程,高反应温度会抑制骨架异构化反应。提高m(Catalyst)/m(Oil)可以增强催化裂化过程中的骨架异构化反应。焦炭对催化剂酸中心的覆盖能抑制骨架异构化反应,但其影响幅度小于对裂化反应的影响。骨架异构化反应是一个快速反应,低反应温度下减少反应时间会增强催化过程中的骨架异构化反应。水蒸气注入量的增加(即降低烃分压)会减少催化过程中的骨架异构化反应。  相似文献   

13.
对CO2氧化丁烯脱氢制备丁二烯的反应体系中引入水蒸气的工艺进行了热力学计算,分析了水蒸气对催化剂选择性及稳定性的影响,并以FeVCrOx/γ-Al2O3为催化剂,考察了反应温度、反应质量空速对催化剂性能的影响。结果表明:向反应体系中引入水蒸气后,丁烯转化率和丁二烯收率会有所下降,但是,引入适量水蒸气可以提高催化剂的选择性;在水蒸气流量为0.028 8 mL/min,反应温度为600℃,反应质量空速为9 h-1的最优反应条件下,催化剂的选择性及稳定性均有所提高。  相似文献   

14.
将正十六烷和十氢萘按85∶15的质量比配成混合原料,以负载Pt的氢型TON结构分子筛作为催化剂,考察温度、压力、液时空速和氢/油体积比对于混合原料中链烷烃和环烷烃加氢异构转化活性和产物分布组成的影响。结果表明,混合原料中的十氢萘在异构体系中的反应活性很低,高温、低压下脱氢生成四氢萘,液时空速、氢/油体积比对十氢萘的转化几乎没有影响。对于混合原料中的正十六烷,低压有利于提高其转化率和异构烃的选择性,但相近转化率下,压力不改变单支链异构烃收率分布。低液时空速可以提高正构烷烃的转化率,但不改变产物分布。实验范围内,氢/油体积比的变化对正构烷烃的临氢转化几乎没有影响。  相似文献   

15.
在固定床费-托合成装置上研究了反应温度、压力、n(H2)/n(CO)、空速、汽包压力和表观气速对工业生产的RFT-2催化剂反应性能和催化剂床层温度分布的影响。结果表明反应温度对RFT-2性能影响显著,随温度提高活性迅速增加,催化剂床层的热点区域变宽和峰值增加,而且在不同温度范围对敏感程度不同。提高压力可以增加反应活性,改善选择性,催化剂床层温度分布变差。n(H2)/n(CO)主要影响费托合成催化剂的活性和产物选择性,对催化床层温度分布影响较小。空速增加会造成CO和H2的转化率的下降,选择性和催化剂床层温度分布变化不明显。通过调节汽包压力来控制催化剂床层温度非常有效和灵敏,对反应性能和温度分布影响显著。表观气速提高可以改善催化剂床层径向的传热,使反应管的传热得到强化,温度分布更加均匀。  相似文献   

16.
随着我国对环保的愈加重视,人们对高品质油品的需求在不断增加。烷烃异构化在提高汽油辛烷值、降低柴油凝点以及改善润滑油性能等方面发挥着重要的作用[1-6]。SAPO-11分子筛由于其独特的一维十元环椭圆型孔道结构(0.63 nm×0.39 nm)和适宜的中强酸性中心[7],对烷烃的异构化反应有着较高的活性和异构化选择性[8-9]。经由进一步改性[10-13]或与其它分子筛复合[14-16],SAPO-11已广泛地应用于长链烷烃异构化的研究。但在长链烷烃异构化的过程中总是伴随着裂化反应,很少有研究者报道SAPO-11对长链烷烃的裂化性能,SAPO-11裂化性能的研究将为柴油和润滑油等异构降凝技术的研发、重质油轻质化的研究以及开发SAPO-11催化剂在炼油与化工领域的应用提供依据。  相似文献   

17.
非碱氮化合物吲哚催化裂化转化规律的研究   总被引:7,自引:0,他引:7  
采用固定床微反活性实验装置,以甲苯、十六烷、四氢萘为溶剂,研究了非碱性含氮化合物吲哚的催化裂化转化规律。反应温度、催化剂与原料油的质量比、空速、原料氮含量都影响待生催化剂的氮含量和氮在产物中的分布。吲哚在催化裂化实验条件下较易发生裂化开环反应,生成苯胺类和氨。催化剂的酸性、烃类溶剂的供氢能力对吲哚裂化有显著影响,酸性中心的作用有利于吲哚转化为氨;溶剂供氢能力越强,氨氮产率越高。提出了吲哚催化裂化的可能转化途径:吲哚通过物理或化学作用吸附于催化剂表面,或在催化剂上脱氢缩合生焦;吲哚烷基化;吲哚需先加氢生成二氢吲哚,二氢吲哚快速裂化转化为苯胺和氨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号