首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Canola extract as an alternative natural antioxidant for canola oil   总被引:2,自引:0,他引:2  
The antioxidative activity of ethanolic extracts of canola meal at 100, 200, 500 and 1000 ppm on refined-bleached (RB) canola oil was examined and compared with commonly used synthetic antioxidants, such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), BHA/BHT/monoglyceride citrate (MGC) andtert-butyl-hydroquinone (TBHQ). Stability of RB oil was monitored under Schaal oven test conditions at 65°C over a 17-d period. Progression of oxidation was monitored by weight gain, peroxide, conjugated diene, 2-thiobarbituric acid and total oxidation values. Canola extracts at 500 and 1000 ppm were more active than BHA, BHT and BHA/BHT/MGC and less effective than TBHQ at a level of 200 ppm.  相似文献   

2.
Virgin unrefined olive oil was protected from oxidation with the antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ) and in one case propyl gallate (PG). All the antioxidants improved the stability of olive oil under accelerated conditions (oven test) and storage conditions at 50 C. In the oven test, where the type of oil used was the same as that used in long-term storage studies (room temperature and 50 C) the relative inhibition effect of the antioxidants was in the following order: TBHQ = BHA > BHT. The combinations of BHA and BHT with TBHQ displayed better stabilizing qualities. Antioxidants did not prevent peroxide formation in olive oil stored at room temperature in daylight; these samples oxidized to a high degree, probably due to the catalytic action of chlorophyll. Citric acid (CA) used alone did not affect the oxidative stability of the oil in the oven test and at room temperature in the dark, but exhibited a negative effect at 50 C. The reduction in peroxide content with teritary butylhydroquinone (TBHQ) in the dark at 50 C was greater than anticipated from the oven studies. Potency of the antioxidants under these conditions (50 C) was in the following order: TBHQ> BHT > BHA. The combinations of BHA 0.01% or BHT 0.01% with TBHQ 0.005% used in the dark at 50 C were less effective than TBHQ 0.01%.  相似文献   

3.
Stabilization of seal blubber and menhaden oils with green tea catechins   总被引:4,自引:0,他引:4  
Catechins, namely (−)epicatechin (EC), (−)epigallocatechin (EGC), (−)epicatechin gallate (ECG) and (−)epigallocatechin gallate (EGCG), were isolated from commercial Chinese green leaves. The antioxidant activity of isolated catechins was compared with those of α-tocopherol, butylated hydroxyanisole (BHA), butylated hydroxytolene (BHT) andtert-butylhydroquinone (TBHQ), all at 200 ppm, in refined, bleached and deodorized seal blubber oil and menhaden oil. The study was carried out under Schaal oven test conditions at 65°C over a 144-h period, except for weight gain measurements, which were continued for up to 200 h. Progression of oxidation was monitored by measuring changes in weight gain and values of peroxide, conjugated diene, and 2-thiobarbituric acid-reactive substances. Oils treated with tea catechins showed excellent oxidative stability as compared with samples that contained commonly used antioxidants, such as α-tocopherol, BHA, BHT, and TBHQ. The potency of catechins in prevention of oxidation of marine oils was in the decreasing order of ECG> EGCG> EGC> EC; ECG was slightly more effective than TBHQ in systems studied.  相似文献   

4.
Thermal stability of some commercial synthetic antioxidants   总被引:1,自引:0,他引:1  
Synthetic antioxidants are widely applied substances in human food and in animal feed industries. These products, which are mainly derived from phenolic structures, were developed to avoid or retard the oxidative rancidity of fats and oils when added either to raw material or to end-products. Synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), tertiary butylhydroxyquinone (TBHQ), and ethoxyquin (EQ) are frequently applied during the cooking of the by-products (viscera, blood, and feathers) in the poultry feed industry. However, results in terms of oxidative prevention are unequal and usually modest. Because information about the thermal stability of synthetic antioxidants is scarce, we developed a laboratory model that simulates the cooking of poultry by-products to study the effectiveness of BHT, BHA, TBHQ, and EQ. The antioxidants were thermally treated at 100–200°C, over 1 or 2 h. The effectiveness of each antioxidant after the thermal treatment was assessed with the Rancimat test by measuring the modification of the induction period for the oxidation of sardine oil and comparing it to the oxidation kinetics of the oil without added antioxidants. Within our experimental conditions, all antioxidants assayed showed different degrees of thermal instability. BHT and TBHQ were effective as antioxidants at temperatures up to 175°C, exhibiting only 25 to 30% inactivation. However, BHA and EQ were inactivated by 70 and 60%, respectively, at 150°C. Heating time (1 and 2 h) at a given temperature did not significantly modify the behavior of the antioxidants assayed. EQ is the most frequently applied antioxidant to prevent oxidative rancidity in the cooking of poultry by-products. However, according to our results, EQ and BHA, which is another antioxidant frequently used by the poultry industry, are less suitable  相似文献   

5.
Sesamol is a natural antioxidant found in sesame oil from roasted sesame seeds. Activation energy and antioxidant capacity of sesamol were determined and compared with other free radical scavengers (FRSs) including tert‐butylated‐hydroxyquinone (TBHQ), butylated‐hydroxyanisol (BHA), or α‐tocopherol in a lard model system treated with different heating temperature. Each FRS was added in lard and heated at 90, 120, 150, and 180°C for 48, 24, 8, or 2 h, respectively and antioxidant capacity was evaluated by conjugated dienoic acid (CDA) value, conjugated diene hydroperoxides, p‐anisidine value (p‐AV), and a modified 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) method. Apparent activation energy of sesamol was determined as 12.98 kcal/mol in a lard model system. Antioxidant capacity of sesamol was as good as that of TBHQ and was higher than those of BHA and α‐tocopherol at 90, 120, and 150°C based on CDA, conjugated diene hydroperoxides, and p‐AV assays. The results of a modified DPPH method showed that each FRS showed different distribution of radical scavenging compounds from oxidized lipids (RSOLs) during oxidation. Sesamol may replace synthetic FRSs like TBHQ and BHA in processed foods treated with high temperature. Practical application: Processed foods are frequently treated with high temperature during oven‐drying, roasting, baking, and deep‐fat frying. This study showed that sesamol, one of natural antioxidants, had stronger antioxidant capacities than other synthetic FRSs at the temperature ranges from 90 to 180°C. The results of this study can be applied in food industries producing deep‐fat fried foods including snacks, chips, and French fries to extend the shelf‐life of final foods with high temperature treatment.  相似文献   

6.
《Fuel Processing Technology》2005,86(10):1071-1085
Biodiesel, an alternative diesel fuel derived from transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. When exposed to air during storage, autoxidation of biodiesel can cause degradation of fuel quality by adversely affecting properties such as kinematic viscosity, acid value and peroxide value. One approach for increasing resistance of fatty derivatives against autoxidation is to treat them with oxidation inhibitors (antioxidants). This study examines the effectiveness of five such antioxidants, tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PrG) and α-Tocopherol in mixtures with soybean oil fatty acid methyl esters (SME). Antioxidant activity in terms of increasing oxidation onset temperature (OT) was determined by non-isothermal pressurized-differential scanning calorimetry (P-DSC). Analyses were conducted in static (zero gas flow) and dynamic (positive gas flow) mode under 2000 kPa (290 psig) pressure and 5 °C/min heating scan rate. Results showed that PrG, BHT and BHA were most effective and α-Tocopherol least effective in increasing OT. Increasing antioxidant loading (concentration) showed sharp increases in activity for loadings up to 1000 ppm followed by smaller increases in activity at higher loadings. Phase equilibrium studies were also conducted to test physical compatibility of antioxidants in SME-No. 2 diesel fuel (D2) blends. Overall, this study recommends BHA or TBHQ (loadings up to 3000 ppm) for safeguarding biodiesel from effects of autoxidation during storage. BHT is also suitable at relatively low loadings (210 ppm after blending). PrG showed some compatibility problems and may not be readily soluble in blends with larger SME ratios. Although α-Tocopherol showed very good compatibility in blends, it was significantly less effective than the synthetic antioxidants screened in this work.  相似文献   

7.
This study evaluated the effectiveness of antioxidants, such as BHA, BHT, TBHQ, propyl gallate (PG), α-tocopherol (α-1), green tea extract (GTE), and rosemary extract (RE) on oxidative stability of CLA concentrate. Stability of CLA concentrate stored in air at 45°C up to 44 d was assessed by PV. During the storage period, the PV of the control CLA concentrate sample increased from 0.20 (fresh oil) to 1654 meq/kg (oxidized oil). On the other hand, the PV for CLA concentrates treated with 200 ppm of the single synthetic antioxidants, BHA, BHT, TBHQ, and PG, increased from 0.20 to 81, 107, 78, and 101 meq/kg, respectively. Also, the PV of CLA concentrate with the addition of 200 ppm single natural antioxidants α-T, GTE, and RE lowered the final PV to 122, 140, and 110 meq/kg, respectively. Under our experimental conditions, the protective effect of 200 ppm antioxidant was in the order of TBHQ>BHA>PG>BHT>RE>α-T> GTE. These results suggest that the appropriate use of antioxidants prolongs the oxidative stability of CLA concentrate.  相似文献   

8.
Oxidation stability is a parameter of great importance for biodiesel quality control to both producers and subsequent consumers. To maintain the quality of biodiesel, currently the most effective and economical method is the addition of antioxidants that prevent or retard the biofuel oxidation reaction. In this study, efficiency and cost of synthetic antioxidants added to B100 biodiesel from soybean oil and pork fat were evaluated, using butylhydroxyanisole (BHA), butylhydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ), in pure form or in mixtures, according to a simplex-centroid mixture experimental design. Results demonstrate an increased induction period (IP) in all trials when compared to the control sample, and TBHQ was the only antioxidant alone that met all the specification standards, while BHT and BHA alone met only the American standard specifications. The antioxidant mixture that presented the highest synergistic effect was that of TBHQ and BHA. Multi-response optimization indicated an optimum formulation containing 75 % TBHQ and 25 % BHA with an IP of 7.27 h at 110 °C and the antioxidant mixture cost of 31.31 USD, to be added for a ton of biodiesel. This simplex-centroid mixture experimental design shows an ability to be applied in the biodiesel, oils and fats industry to evaluate the oxidation stability and the occurrence of synergism between different mixtures of synthetic or natural antioxidants and their costs.  相似文献   

9.
Relations Between Fat Oxidation and Antioxidative Additives in Mixed Feeding Stuff Storage experiments with various mixtures of feeding stuffs were carried out. The influence of single factors on fat stability in test mixtures should be tested. The type of fat (refined soya bean oil, free fatty acids from soya bean oil raffination) fat content (3, 6, 9%), antioxidants (BHA, TBHQ), amount of anti oxidants (0 - 50 - 100 - 150 mg/kg feeding stuff), storage temperature (4, 14, 24°C) and storage period (6 - 12 - 24 weeks) were varied. The peroxide value (POZ) and the remaining amounts of antioxidants were used as parameters for the determination of the fat oxidation. The test results showed a some what enlarged stability of the fatty acids of soya bean oil raffination compared with refined soya bean oil in presence of anti oxidants. The stabilising effect of TBHQ was higher than that of BHA, but the consumption of antioxidants was lower with BHA than with TBHQ. With increasing amounts of antioxidants the stability of the fat was enlarged. The stability was lowered with rising storage temperature. Increasing storage period gives rise to a considerable increase in oxidation.  相似文献   

10.
Various amino acids, selected for their potential antioxidant activity, were, covalently attached to 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox-C), a lower homolog of vitamin E that has great antioxidant effectiveness. The resulting Troloxylamino acids (T-AA) had greater antioxidant effectiveness than Trolox-C in a linoleate emulsion system oxidized by hemoglobin. Troloxyl-tryptophan-methyl ester and Troloxyl-methionine-methyl ester were the most effective T-AA evaluated in the linoleate emulsion. However, butylated hydroxyanisole (BHA), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and α-tocopherol were more antioxidant than any T-AA in the emulsion system. In a Schaal oven test at 45 C. Trolox-C was by by far the most effective antioxidant evaluated in corn oil. BHT and Troloxylcysteine had significant antioxidant activity in corn oil, but no other T-AA was antioxidant in corn oil. In butter oil, Trolox-C again had the highest antioxidant activity, and BHA and BHT were also highly antioxidant. All t-AA had antioxidant activity in butter oil, with Troloxyl-methioninc and Troloxyl-cysteine having the grcatest antioxidant effectiveness. The T-AA of highest antioxidant activity were hydrolyzed by chymotrypsin and/or trypsin, in vitro.  相似文献   

11.
ABSTRACT

Avocado (Persea americand) paste was spray dried at inlet air temperature of 180°C, 80°C outlet air temperature, air velocity of 27 m/s and a feed flow rate of 0.642 l/min. Lipids in the paste were emulsified using 10 % Monoacylglyceride (MAG). Treatments were applied according to the following antioxidants mixtures: 1) BHA (butylated hydroxyanisole) + BHT (butylated hydroxytoluene) (0.05 % each); 2) TBHQ (Tertiary butylated hydroxyquinone) + Citric Acid (0.05 + 0.1 %); 3) BHA + BHT + Citric Acid (0.05 + 0.05 + 0.1 %); 4) BHA + Propyl gallate (0.05 + 0.05 %); or 5) BHA + Propyl gallate + Citric acid (0.05 + 0.05 + 0.1 %). Samples were stored at 6, 12, 25, 28 and 40 °C. Peroxide values were determined periodically. Development of rancidity was detected by sensory evaluation of the samples. For samples kept at 6 and 12 °C, an antioxidant mixture containing BHA and propyl gallate at 0.05% gave the least protection to the stored avocado powder. The mixture containing TBHQ and citric acid yielded the lowest rancidity development.  相似文献   

12.
The loss of phenolic antioxidants is one of the major problems associated with the food frying process. As temperature increases and heating time is prolonged, losses of both tertiary butylhydroquinone (TBHQ) and butylated hydroxytoluene (BHT) are significantly increased. In this work, the effect of different types of free fatty acids (FFA) and the acid value (AV) of soybean oil (SBO) on TBHQ and BHT losses during heating were systematically studied. The results showed that the higher the AV of SBO at 120 or 180 °C, the greater the TBHQ loss. The type of FFA also had an observable effect on TBHQ losses at both temperatures, whereas FFA type had no effect on BHT losses. Employing high performance liquid chromatography and liquid chromatography–mass spectra (LC–MS analysis, it was determined that esterification of TBHQ with FFA (C8:0, C18:0, C18:1) occurred at 120 or 180 °C, whereas esterification of BHT with FFA (C8:0, C18:0, C18:1) in SBO was not observed. Nuclear magnetic resonance analysis showed that esterification occurred at the 4-position of TBHQ.  相似文献   

13.
A significant problem associated with the commercial acceptance of biodiesel is poor oxidative stability. This study investigates the effectiveness of various natural and synthetic antioxidants [α-tocopherol (α-T), butylated hydroxyanisole (BHA), butyl-4-methylphenol (BHT), tert-butylhydroquinone (TBHQ), 2, 5-di-tert-butyl-hydroquinone (DTBHQ), ionol BF200 (IB), propylgallate (PG), and pyrogallol (PY)] to improve the oxidative stability of soybean oil (SBO-), cottonseed oil (CSO-), poultry fat (PF-), and yellow grease (YG-) based biodiesel at the varying concentrations between 250 and 1,000 ppm. Results indicate that different types of biodiesel have different natural levels of oxidative stability, indicating that natural antioxidants play a significant role in determining oxidative stability. Moreover, PG, PY, TBHQ, BHA, BHT, DTBHQ, and IB can enhance the oxidative stability for these different types of biodiesel. Antioxidant activity increased with increasing concentration. The induction period of SBO-, CSO-, YG-, and distilled SBO-based biodiesel could be improved significantly with PY, PG and TBHQ, while PY, BHA, and BHT show the best results for PF-based biodiesel. This indicates that the effect of each antioxidant on biodiesel differs depending on different feedstock. Moreover, the effect of antioxidants on B20 and B100 was similar; suggesting that improving the oxidative stability of biodiesel can effectively increase that of biodiesel blends. The oxidative stability of untreated SBO-based biodiesel decreased with the increasing indoor and outdoor storage time, while the induction period values with adding TBHQ to SBO-based biodiesel remained constant for up to 9 months.  相似文献   

14.
Tertiary butylhydroquinone (TBHQ), hydroquinone (HQ), propyl gallate (PG), butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) had much higher antioxidant activity in crude safflower oil than in a commercial brand vegetable oil (Bint oil). The following active oxygen (AOM, hours at 97.8° C) and storage stability (days at 45° C) values for each antioxidant in safflower oil were; (27.9, 105.0), (21.2, 44.8), (15.3, 45.5), (9.8, 36.8) and (7.9, 33.5) respectively compared with (6.8, 31.5) for the control. Ascorbyl palmitate (AP), ascorbic acid (AA) and citric acid (CA) were found to improve the AOM stability of both oils. The same values in Bint oil were: (9.0, 34.3), (9.0, 28.3), (9.4, 41.0), (7.3, 28.5) and (6.2, 2.5) respectively compared with (5.3, 23.3) for the control. Ascorbyl palmitate (AP), ascorbic acid (AA) and citric acid (CA) were found to improve the AOM stability of both oils. AP was more effective and CA least effective in safflower oil, whereas the reverse was true in Bint oil. The five antioxidants were individually blended with the three synergists (0.01 % of each) and the 15 combinations added to each oil and compared with the antioxidant controls at 0.02 %. Safflower oil stability was greater with pure TBHQ, HQ and PG than with any of the synergist mixtures whereas the BHA, BHT-synergist mixtures were found equal or superior to that treated with BHA or BHT alone. Bint oil treated with CATBHQ or CA-HQ mixtures showed improved stability compared to oils treated with these antioxidants alone. However, the AOM method alone suggested CA-PG, CA-BHA and CA-BHT mixtures improved the stability compared to the oil-antioxidant controls. Chelation of metals by CA was assumed to be the primary cause of this synergism, whereas AP and AA behaved more like weak antioxidants.  相似文献   

15.
Antioxidants are an alternative to prevent or retard biofuel degradation. This study assessed the oxidative stability of biodiesel B100, made from soybeans, in the presence of three synthetic antioxidants, butylhydroxyanisole (BHA), terbutylhydroquinone (TBHQ) and butylhydroxytoluene (BHT), pure or in mixture, from the simplex-centroid design. Results revealed that when the three oxidants were employed separately, as well as the ternary mixture, they presented induction period over 6 h, at 110 °C, being in accordance with specifications of the norm EN1412. Besides that, depending on the temperature, the BHA, TBHQ and BHT oxidants act in different ways, highlighting that BHA and TBHQ presented higher efficiency in the prevention of the oxidative process of the biofuel B100.  相似文献   

16.
The influence of antioxidants on the oxidation stability of biodiesel   总被引:10,自引:3,他引:10  
Oxidation stability of bodiesel is an important issue because FA derivatives are more sensitive to oxidative degradation than mineral fuel. Therefore, in the most recent European Specifications for biodiesel, a minimum value of 6 h for the induction period at 110°C, measured with a Rancimat instrument, is specified. To guarantee this value at the filling station, the use of additional antioxidants will be necessary. In this paper we show the influence of different synthetic and natural antioxidants on the oxidation stability, using the specified test method. Biodiesel produced from rapeseed oil, sunflower oil, used frying oil, and beef tallow, both undistilled and distilled, was investigated. The four synthetic antioxidants pyrogallol (PY), propylgallate (PG), TBHQ, and BHA produced the greatest enhancement of the induction period. These four compounds and the widely used BHT were selected for further studies at concentrations from 100 to 1000 mg/kg. The induction periods of methyl esters from rapeseed, oil, used frying oil, and tallow could be improved significantly with PY, PG, and TBHQ, whereas BHT was not very effective. A good correlation was found between the improvement of the oxidation stability and the FA composition.  相似文献   

17.
The effectiveness of tertiarybutylhydroquinone (TBHQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in stabilizing tapioca chips was assessed by determining the peroxide andp-anisidine values, absorbances at 232 nm and 268 nm and the 18:2/16:0 ratios of oil extracted from tapioca chips. The order of effectiveness of the antioxidants in stabilizing the chips was found to be TBHQ > BHT > BHA. The order of effectiveness of antioxidants, TBHQ > BHT > BHA, was maintained for chips from corresponding 1st, 4th and 7th fryings. The loss of antioxidants during storage could not be directly related to oxidation parameters.  相似文献   

18.
Treatments of crude safflowerseed, soybean, sunflowerseed and cottonseed oils with the antioxidant compounds butylated hydroxyanisole (BHA), propyl gallate (PG) and tertiary butylhydroquinone (TBHQ) have been investigated. PG and TBHQ were effective in inhibiting oxidative degradation of the crude oils subjected to long term storage as determined by measurement of peroxide formation in the oils during storage and by determination of AOM and oven (145 F) stabilities of the oils before and after storage. Of particular interest were the oxidative stability characteristics of these oils after they had been stored for relatively long periods in crude form (with and without the antioxidants) and then alkali refined, bleached and deodorized. The data from stability tests on these refined oils indicate that vegetable oils protected with potent antioxidants, such as PG or TBHQ, during storage in the crude form might yield refined, bleached and deodorized oils with somewhat higher initial oxidative stability and with better response to further antioxidant treatment.  相似文献   

19.
Sensory studies on autoxidation of canola oil, stored under several variations of Schaal Oven test conditions, suggest an induction period of 2–4 d at 60–65°C. Similar induction periods have been observed between canola and sunflower oils, whereas a longer induction period has been found for soybean oil. Canola oil seems to be more stable to storage in light than cottonseed and soybean oils but is less stable than sunflower oil. Storage stability of products fried in canola oil is similar to products fried in soybean oil. Storage stability of canola and cottonseed oils that had been used in the frying of potato chips showed that canola oil was more prone to autoxidation during storage at 40°C. The presence of light aggravated the oxidative effects and was similar for both oils. Advances in our knowledge about the shelf life of canola oil would be strengthened by standardization of Schaal Oven testing conditions and by specifying the testing protocol for photooxidation studies. Methods for training of panelists and for handling and evaluating oils and fried foods require definition. Rating scales used in the evaluation of oils need to be evaluated to ensure that reliable and valid measurements are achieved. Further progress is needed in the identification of chemical indicators that can be used to predict sensory quality of oils. Presented in part at AOCS Annual Meeting in Toronto, Ontario, Canada, May 1992.  相似文献   

20.
This study investigated the effect of ethanolic sesame cake extract on oxidative stabilization of olein based butter. Fractionation of cream was performed by the dry fractionation technique at 10 °C, ethanolic sesame cake extract (SCE) was incorporated into olein butter at three different concentrations; 50, 100, 150 ppm (T1, T2, T3) and compared with a control. The total phenolic content of SCE was 1.72 (mg gallic acid equivalent g?1 dry weight). The HPLC characterization of ethanolic sesame cake revealed the presence of antioxidant substances viz. sesamol, sesamin and sesamolin in higher extents. The DPPH free radical scavenging activity of SCE was 83 % as compared to 64 and 75 % in BHA and BHT. Fractionation of milk fat at 10 °C significantly (p < 0.05) influenced the fatty acid profile of olein and stearin fractions from the parent milk fat. Concentration of oleic acid and linoleic acid in olein fraction was 29.62 and 33.46 % greater than the parent milk fat. The loss of C18:1 in 90 days stored control and T3 was 24.37 and 3.58 %, respectively, 58 % C18:2 was broken down into oxidation products over 8.55 % loss in T3. The peroxide value of control, T1, T2, BHT and T3 in the Schaal oven test was 8.59, 8.12, 5.34, 4.52 and 2.49 (mequiv O2/kg). The peroxide value and anisidine value of 3 months stored control and T3 were 1.21, 0.42 (mequiv O2/kg) and 27.25, 13.25, respectively. The concentration of conjugated dienes in T3 was substantially less than the control. The induction period of T3 was considerably higher than BHT with no difference in sensory characteristics (p > 0.05). Ethanolic SCE can be used for the long‐term preservation of olein butter, with acceptable sensory characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号