共查询到20条相似文献,搜索用时 62 毫秒
1.
入侵检测技术作为一种主动的网络安全防护技术越来越引起研究者的关注,该文以k-means算法为基础,对基于k-means算法的入侵检测系统进行了研究和分析,指出了传统k-means算法的不足,提出了相应的改进策略,在此基础上完成基于k-means改进算法的入侵检测系统的研究。 相似文献
2.
入侵检测技术作为一种主动的网络安全防护技术越来越引起研究者的关注,该文以k-means算法为基础,对基于k-means算法的入侵检测系统进行了研究和分析,指出了传统k-means算法的不足,提出了相应的改进策略,在此基础上完成基于k-means改进算法的入侵检测系统的研究。 相似文献
3.
文章基于k-means改进算法的入侵检测系统进行应用分析,结合当前入侵检测系统发展需要以及传统k-means算法为基础,积极对k-means改进算法进行详细探讨,主要目的在于更好的提高入侵检测系统的检测质量. 相似文献
4.
本文介绍了入侵检测系统的基本概念,分析了数据挖掘技术在入侵检测系统中的应用.本文主要研究了聚类分析中的k-means算法在入侵规则匹配中的应用,指出了该算法的不足,通过对传统k-means算法的改进解决了聚类算法固有的无法预知最佳聚类个数和分类过细的问题.提高了系统的规则匹配效率. 相似文献
5.
基于k-means聚类算法的研究 总被引:4,自引:0,他引:4
分析研究聚类分析方法,对多种聚类分析算法进行分析比较,讨论各自的优点和不足,同时针对原k-means算法的聚类结果受随机选取初始聚类中心的影响较大的缺点,提出一种改进算法.通过将对数据集的多次采样,选取最终较优的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响度大大降低;同时,在选取初始聚类中心后,对初值进行数据标准化处理,使聚类效果进一步提高.通过UCI数据集上的数据对新算法Hk-means进行检测,结果显示Hk-means算法比原始的k-means算法在聚类效果上有显著的提高,并对相关领域有借鉴意义. 相似文献
6.
随着网络复杂度的增加,传统的入侵检测方法已经无法满足日益增长的安全需求。采用大数据的挖掘算法提高入侵检测的检测率是当前研究的热点。为此,本文提出一种基于k-means和决策树算法的混合入侵检测算法(KDI)。该算法首先对数据预处理的离散化方法进行改进,获取高质量样本数据,并根据现实中易出现类别信息增益比差异小的特点,利用k-means算法根据增益比差异将样本数据先分类再建立决策树,提升了算法的检测率。实验结果表明KDI算法能够有效地检测网络数据中隐含的已知和未知的入侵行为。 相似文献
7.
针对常用聚类分析算法应用于入侵检测系统所存在的两大方面的问题:一是其采用随机法确定初始聚类中心,不同的初始值可能产生不同的聚类结果;二是采用爬山式技术导致容易陷入局部最优解。基于此提出一种改进的聚类分析算法,通过确定两个最远初始聚类中心和基于最大最小距离的层次聚类、DBI指标来确定剩余初始聚类中心,该方法使上述问题得到解决,并通过仿真实验验证了该算法的可行性和优越性。 相似文献
8.
9.
10.
对k-means聚类算法的改进 总被引:17,自引:6,他引:17
提出了一种k-means聚类算法中寻找初始聚类中心的新方法。算法首先计算样本间的距离,然后根据样本点之间的距离寻找有可能是一类的数据,依据这些样本点形成初始聚类中心,从而得到较好的聚类结果。实验表明,改进后的方法相对于随机选取初始聚类中心具有较高的准确率。 相似文献
11.
12.
一种改进的K-means聚类算法 总被引:1,自引:0,他引:1
本文提出了一种带离群点数据过滤的K-means改进算法。该算法根据离群点数据特征制定了离群点数据的发现规则,并在原算法中加入了离群点数据的发现和处理步骤。通过对给定的具有普遍意义的数据实验表明,改进后算法能较为稳定的发现数据集中存在的离群点数据,这些离群点数据符合离群点数据特征;同时在剔除这些极少数离群点数据后,显著提高了聚类结果簇的凝聚度,从而有效克服了离群点数据对K-means算法的影响,使聚类效果得以显著提高。 相似文献
13.
侯卫彪 《电脑与微电子技术》2010,(12):25-29
讨论入侵检测系统的基本技术,探讨基于智能技术的入侵检测方法,提出基于聚类算法的入侵检测系统。从实验结果来看,该入侵检测系统检测率高,误警率低,能有效满足用户的需求。 相似文献
14.
人工鱼群和K均值算法相融合的网络入侵检测 总被引:1,自引:0,他引:1
针对K均值算法存在的初始聚类中心敏感和易陷入局部最优等缺陷,利用人工鱼群算法全局寻优能力,提出一种人工鱼群和K均值算法相融合的网络入侵检测模型(AFSA-KCM).首先采用抽样技术和最大最小距离算法获得一组较优的聚类中心和聚类数目,然后通过人工鱼群模拟自然界鱼群的觅食、聚群,追尾等行为,找到最优的聚类中心和聚类数目,最后利用K均值算法根据最优的聚类中心和聚类数目建立最优的入侵检测模型,并采用KDD CUP99数据集进行测试实验.实验结果表明,相对于其它入侵检测模型,AFSA-KCM不仅提高了网络入侵检测率,同时加快了网络入侵检测速度,可以为网络安全入侵检测提供有效保证. 相似文献
15.
一种改进K-means算法的聚类算法CARDBK 总被引:1,自引:0,他引:1
CARDBK聚类算法与批K-means算法的不同之处在于,每个点不是只归属于一个簇,而是同时影响多个簇的质心值,一个点影响某一个簇的质心值的程度取决于该点与其它离该点更近的簇的质心之间的距离值。 从聚类结果的熵、纯度、F1值、Rand Index和NMI等5个性能指标值来看,与多个不同算法在多个不同数据集上分别聚类相比, 该算法具有较好的聚类结果;与多个不同算法在同一数据集上很多不同的初始化条件下分别聚类相比,该算法具有较好且稳定的聚类结果;该算法在不同大小数据集上聚类时具有线性伸缩性且速度较快。 相似文献
16.
由于入侵检测使用的数据集十分庞大,现有的串行聚类算法很难在合理的时间内得到结果。文章提出了一种应用于入侵检测的并行K-均值算法,给出了其加速比估算公式,实验证明了算法的正确性和有效性。 相似文献
17.
18.
PSO算法是一种基于群体智能的群优化和群搜索算法,效率高、收敛快。提出将其与K-means算法结合,用于网络入侵检测。实验表明,PSO-based K-means算法克服了K-means算法对初始聚类中心、孤立点和噪声敏感且易陷入局部最优解的缺点,收敛速度快,检测准确率较高。 相似文献
19.
自动化入侵检测是入侵检测的重要研究方向。传统的入侵检测由于依赖标识数据进行训练,不能做到自动更新规则库和检测新的入侵。提出一种自动检测入侵的方法——基于聚类(Clustering)的未标识数据的检测。它不依赖分类标识数据进行训练,能检测到未知的入侵而保持着很低的误报率。 相似文献