首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To study the cortical physiology of fast repetitive finger movements. METHODS: We recorded steady-state movement-related magnetic fields (ssMRMFs) associated with self-paced, repetitive, 2-Hz finger movements in a 122-channel whole-head magnetometer. The ssMRMF generators were determined by equivalent current dipole (ECD) modeling and co-registered with anatomical magnetic resonance images (MRIs). RESULTS: Two major ssMRMF components occurred in proximity to EMG onset: a motor field (MF) peaking at 37+/-11 ms after EMG onset, and a postmovement field (post-MF), with inverse polarity, peaking at 102+/-13 ms after EMG onset. The ECD for the MF was located in the primary motor cortex (M1), and the ECD for the post-MF in the primary somatosensory cortex (S1). The MF was probably closely related to the generation of corticospinal volleys, whereas the post-MF most likely represented reafferent feedback processing. CONCLUSIONS: The present data offer further evidence that the main phasic changes of cortical activity occur in direct proximity to repetitive EMG bursts in the contralateral M1 and S1. They complement previous electroencephalography (EEG) findings on steady-state movement-related cortical potentials (ssMRCPs) by providing more precise anatomical information, and thereby enhance the potential value of ssMRCPs and ssMRMFs for studying human sensorimotor cortex activation non-invasively and with high temporal resolution.  相似文献   

2.
Bereitschaftspotentials (BPs) preceding simple repetitive finger movements were recorded in 11 normal volunteers. By modeling the recorded data with multiple equivalent dipoles we found that bilateral sources in the motor cortex were the best fitting hypothesis for the early BP. The activity of the source contralateral to the moving finger was increased during the steep slope of the late BP before and during the motor potential. Around and after electromyogram (EMG) onset, separate sources were detected for the motor potential close to the anterior wall of the central sulcus, and for the reafferent somatosensory potential in the postcentral gyrus. Their source wave forms showed short transient deflections peaking about 10 msec and 100 msec, respectively, after EMG onset. No evidence was found for significant source currents in the supplementary motor area (SMA), which has been suggested as the main generator of the BP. Placing probe dipoles arbitrarily into the region of the SMA did not result in the detection of a large source activity. Therefore, we conclude that the SMA does not provide a major contribution to the scalp BP during simple repetitive finger movements.  相似文献   

3.
R Cakmur  VL Towle  JF Mullan  D Suarez  JP Spire 《Canadian Metallurgical Quarterly》1997,139(12):1117-24; discussion 1124-5
Intra-operative localization of sensorimotor cortex is of increasing importance as neurosurgical techniques allow safe and accurate removal of lesions around the central sulcus. Although direct cortical recordings of somatosensory evoked potentials (SEPs) are known to be helpful for cortical localization, source localization models can provide more precise estimates than subjective visual analysis. In addition to intra-operative analysis of waveforms and amplitudes of SEPs to median nerve stimulation in 20 neurosurgical patients, we used a spatiotemporal dipole model to determine the location of the equivalent dipoles consistent with the cortical distribution of the SEPs. The early cortical SEPs were modeled by 2 equivalent dipoles located in the postcentral gyrus. The first dipole was primarily tangentially oriented and explained N20 and P20 peaks. The second dipole was primarily radially oriented and explained P25 activity. We found consistent localization of the first dipole in the postcentral gyrus, which was always located within 8 mm of the central sulcus, with an average distance of 3 mm. This finding provides an objective basis for using the SEP phase reversal method for cortical localization. We conclude that dipole source modeling of the cortical SEPs can be considered as an objective way of localizing the cortical hand sensory area.  相似文献   

4.
OBJECTIVE: In this study, information about the localization of the central sulcus obtained by magnetic source imaging (MSI) was intraoperatively translated to the brain, using frameless image-guided stereotaxy. In the past, the MSI results could be translated to the surgical space only by indirect methods (e.g., the comparison of the MSI results, displayed in surface renderings, with bony landmarks or blood vessels on the exposed brain surface). METHODS: Somatosensory evoked fields were recorded with a MAGNES II biomagnetometer (Biomagnetic Technologies Inc., San Diego, CA). Using the single equivalent current dipole model, the localization of the somatosensory cortex was superimposed on magnetic resonance imaging with a self-developed contour fit program. The magnetic resonance image set containing the magnetoencephalographic dipole was then transferred to a frameless image-guided stereotactic system. Intraoperatively, the gyrus containing the dipole was identified as the postcentral gyrus, using neuronavigation, and the next anterior sulcus was regarded as the central sulcus. With intraoperative cortical recording of somatosensory evoked potentials, this assumption was verified in each case. RESULTS: In all cases, the preoperatively assumed localization of the central sulcus and motor cortex with MSI agreed with the intraoperative identification of the central sulcus using the phase reversal technique. CONCLUSION: The combined use of MSI and a frameless stereotactic system allows a fast orientation of eloquent brain areas during surgery. This may contribute to a safer and more radical surgery in lesions adjacent to the motor cortex.  相似文献   

5.
OBJECTIVE: To study the mechanisms underlying recovery from middle cerebral artery infarction in 7 patients with an average age of 53 years who showed marked recovery of hand function after acute severe hemiparesis caused by their first-ever stroke. INTERVENTIONS: Assessment of motor functions, transcranial magnetic stimulation, somatosensory evoked potentials, magnetic resonance imaging, and positron emission tomographic measurements of regional cerebral blood flow during finger movement activity. RESULTS: The infarctions involved the cerebral convexity along the central sulcus from the Sylvian fissure up to the hand area but spared the caudate nucleus, thalamus, middle and posterior portions of the internal capsule, and the dorsal part of the precentral gyrus in each patient. After recovery (and increase in motor function score of 57%, P<.001), the motor evoked potentials in the hand and leg muscles contralateral to the infarctions were normal, whereas the somatosensory evoked potentials from the contralateral median nerve were reduced. During fractionated finger movements of the recovered hand, regional cerebral blood flow increases occurred bilaterally in the dorsolateral and medial premotor areas but not in the sensorimotor cortex of either hemisphere. CONCLUSIONS: Motor recovery after cortical infarction in the middle cerebral artery territory appears to rely on activation of premotor cortical areas of both cerebral hemispheres. Thereby, short-term output from motor cortex is likely to be initiated.  相似文献   

6.
We describe a technique for mapping out human somatosensory cortex using functional magnetic resonance imaging (fMRI). To produce cortical activation, a pneumatic apparatus presented subjects with a periodic series of air puffs in which a sliding window of five locations moved along the ventral surface of the left arm in a proximal-to-distal or distal-to-proximal direction. This approach, in which the phase-delay of the stimulus can be used to produce somatotopic maps of somatosensory cortex, is based on a method used to generate retinotopic maps of visual cortex. Functional images were acquired using an echoplanar 1.5T scanner and a T2*-weighted spiral acquisition pulse sequence. The periodic series of air puffs created phase-related activation in two cortical regions of the contralateral parietal lobe, the posterior bank of the central sulcus and a more posterior and lateral region.  相似文献   

7.
Patients with idiopathic and symptomatic restless legs syndrome (RLS) suffer from "dyskinesia while awake" or "daytime myoclonus" when at rest preceded by sensory symptoms. In order to characterise the RLS either as reflex movement or as voluntary movement we measured movement-related cortical potentials in 5 idiopathic and 8 uraemic RLS patients. Movements from both legs were polygraphically recorded concomitantly with cortical activity 2000 msec before to 500 msec after onset of EMG activity. These data were compared with a voluntary simulation of each patient's movement pattern and with 5 age-matched controls performing dorsiflexion of the right, left and both feet. Cortical activity preceding daytime myoclonus was absent in RLS patients whereas self-initiated leg movements in patients elicited onset times (1180-1380 msec) and amplitudes of Bereitschaftspotential (readiness potential) not significantly different from readiness potentials in control subjects (P > 0.05). Lack of movement-related potentials in myoclonus and/or dyskinesias during daytime in RLS patients is compatible with an involuntary mechanism of induction and points towards a subcortical or spinal origin of RLS.  相似文献   

8.
Modification of somatosensory processing depending on the behavioral setting was studied. Active alternating movements of the fingers, passive tactile stimuli to the hand, and active exploration of objects were performed during recording of somatosensory evoked potentials (SEPs). SEPs were elicited by compound electrical median nerve stimulation and electrical stimulation at detection threshold of cutaneous median nerve fascicles identified by microneurography. Electrical stimulation was not time-locked to the studied condition. In comparison with SEPs at rest there was attenuation of early cortical potentials up to 25 ms post-trigger in all nonresting conditions. In stimulation of the compound median nerve as well as of isolated cutaneous fascicles of a hand actively exploring an object there was an additional increased negativity, peaking at 28 ms. This facilitory effect was independent of attentional focusing and was absent during exploration using the ipsilateral, non-electrically stimulated hand. In patients with parietal lesions the facilitatory effect was diminished on the affected side. Spline interpolated brain maps at this latency based on 32-channel recordings in healthy volunteers showed a shift of local contralateral positive maximum from frontal to parietal during exploration, indicating enhancement of a tangential dipole. It is suggested that in conditions involving close sensorimotor interaction such as exploratory hand movements there is preactivation of a cortical area which is located in the central sulcus and receives cutaneous somatosensory inputs.  相似文献   

9.
Scalp potential topographies evoked by innocuous and noxious sural nerve stimulation were obtained from 15 human subjects. The SEP scalp topography could be separated into 6 different stable periods (SP), that is, consecutive time points where there were no major changes in the topographic pattern. SP1 (occurring 58-90 msec post stimulus) was characterized by a contralateral frontal positivity and a central negativity oriented ipsilateral to the evoking stimulus; SP2 (92-120 msec) by a bilateral frontal positivity and a symmetrical central negativity; SP3 (135-158 msec) by a widespread negativity with a minimum at the contralateral temporo-frontal region; and SP4 (178-222 msec), SP5 (223-277 msec) and SP6 (282-339 msec) by a widespread positivity with a maximum located along the centro-parietal midline. SP4, SP5, and SP6 could be distinguished by changes in the orientation of the isovoltage contour lines and/or by changes in the location of the maximum. The stable periods had similar onset and offset latencies and the same major features across subjects. However, the topographic patterns were not identical across subjects. These individual differences are likely due to the expected variability in the orientation of the equivalent regional dipole sources generating these potentials.  相似文献   

10.
Surgery of lesions within the central region requires exact intraoperative anatomical orientation and knowledge of the position of functional cortical regions to minimize the surgical trauma and to avoid postoperative neurological deficits. We combined somatosensory evoked potential (SSEP) phase reversal and/or cortical electrical stimulation with neuronavigation in 26 patients for localization and visualization of functional cortical areas and their anatomical site in relation to the lesion. After location of the central sulcus by means of SSEP phase reversal, the precentral gyrus was electrically stimulated to detect functional motor regions. Electrode position was documented, and the functional regions were related to the site of the lesion using a specially developed neuronavigation system. In 11 of 15 patients the central fissure was located with SSEP phase reversal. Electrical stimulation yielded motor evoked potentials in 23 of the total 26 patients. The anatomical site of these functional regions and their relation to the lesion were evaluated with the neuronavigation system. The precentral gyrus, central sulcus, and postcentral gyrus could be identified in all 23 cases. The combination of intraoperative electrophysiological mapping and neuronavigation provides safe and reliable localization of the sensorimotor cortex. This technique is a promising tool to minimize the risk of surgically caused sensory and motor deficits.  相似文献   

11.
The purpose of this study was to relate a psycholinguistic processing model of picture naming to the dynamics of cortical activation during picture naming. The activation was recorded from eight Dutch subjects with a whole-head neuromagnetometer. The processing model, based on extensive naming latency studies, is a stage model. In preparing a picture"s name, the speaker performs a chain of specific operations. They are, in this order, computing the visual percept, activating an appropriate lexical concept, selecting the target word from the mental lexicon, phonological encoding, phonetic encoding, and initiation of articulation. The time windows for each of these operations are reasonably well known and could be related to the peak activity of dipole sources in the individual magnetic response patterns. The analyses showed a clear progression over these time windows from early occipital activation, via parietal and temporal to frontal activation. The major specific findings were that (1) a region in the left posterior temporal lobe, agreeing with the location of Wernicke"s area, showed prominent activation starting about 200 msec after picture onset and peaking at about 350 msec (i.e., within the stage of phonological encoding), and (2) a consistent activation was found in the right parietal cortex, peaking at about 230 msec after picture onset, thus preceding and partly overlapping with the left temporal response. An interpretation in terms of the management of visual attention is proposed.  相似文献   

12.
Generators of early cortical somatosensory evoked potentials (SEPs) still remain to be precisely localised. This gap in knowledge has often resulted in unclear and contrasting SEPs localisation in patients with focal hemispheric lesions. We recorded SEPs to median nerve stimulation in a patient with right frontal astrocytoma, using a 19-channel recording technique. After stimulation of the left median nerve, N20 amplitude was normal when recorded by the parietal electrode contralateral to the stimulation, while it was abnormally enhanced in traces obtained by the contralateral central electrode. The amplitude of the frontal P20 response was within normal limits. This finding suggests that two dipolar sources, tangential and radial to the scalp surface, respectively, contribute concomitantly to N20 generation. The possible location of the N20 radial source in area 3a is discussed. The P22 potential was also recorded with increased amplitude by the central electrode contralateral to the stimulation, while N30 amplitude was normal in frontal and central traces. We propose that the radial dipolar source of P22 response is independent from both N20 and N30 generators and can be located either in 3a or in area 4. This report illustrates the usefulness of multichannel recordings in diagnosing dysfunction of the sensorimotor cortex in focal cortical lesions.  相似文献   

13.
A variety of clinical and experimental findings suggest that parkinsonian resting tremor results from the involuntary activation of a central mechanism normally used for the production of rapid voluntary alternating movements. However, such central motor loop oscillations have never been directly demonstrated in parkinsonian patients. Using magnetoencephalography, we recorded synchronized and tremor-related neuromagnetic activity over wide areas of the frontal and parietal cortex. The spatial and temporal organization of this activity was studied in seven patients suffering from early-stage idiopathic Parkinson's disease (PD). Single equivalent current dipole (ECD) analysis and fully three-dimensional distributed source solutions (magnetic field tomography, MFT) were used in this analysis. ECD and MFT solutions were superimposed on high-resolution MRI. The findings indicate that 3 to 6 Hz tremor in PD is accompanied by rhythmic subsequent electrical activation at the diencephalic level and in lateral premotor, somatomotor, and somatosensory cortex. Tremor-evoked magnetic activity can be attributed to source generators that were previously described for voluntary movements. The interference of such slow central motor loop oscillations with voluntary motor activity may therefore constitute a pathophysiologic link between tremor and bradykinesia in PD.  相似文献   

14.
The aim of this study was to determine if cortical motor representation and generators change after partial or complete paralysis after spinal cord injury (SCI). Previously reported evidence for a change in cortical motor function after SCI was derived from transcranial magnetic stimulation. These studies inferred a reorganization of the cortical motor system. We applied the new technique of high-resolution EEG to measure changes in cortical motor representation directly. We recorded and mapped the motor potential (MP) of the movement-related cortical potentials in 12 SCI patients and 11 control subjects. Results were analyzed using a distance metric to compare MP locations between patients and control subjects. EEG was coregistered with subject-specific MR images and a boundary element model created for dipole source analysis (DSA). When compared with normal control subjects, seven quadriparetics had posteriorly located MPs with finger movements. One paraparetic had a posterior MP with toe movements, but three who could not move the toes had normally located MPs on attempts to move. DSA confirmed the electrical field map distributions of the MPs. We are reporting a reorganization of cortical motor activity to a posterior location after SCI. These results suggest an important role of the somatosensory cortex (S1) in the recovery process after SCI.  相似文献   

15.
OBJECTIVE: To evaluate the characteristics of high frequency (HF) components of the early cortical somatosensory evoked potentials (SEPs). METHODS: We recorded 8-channel SEPs from the frontal and left centro-parietal scalp after right median nerve stimulation with a wide band-pass (0.5-2000 Hz) and digitized at 40 kHz sampling rate in 12 healthy subjects. HF components were analyzed after digital band-pass filtering (300-1000 Hz). The power spectrum was obtained by a maximum entropy method. RESULTS: HF oscillations (maximum power at 600-800 Hz) consisting of 5 to 8 peaks were discriminated from the preceding P14 far-field in all cases and their phases were reversed between the frontal and contralateral parietal regions. In addition, in subjects with a high amplitude central P22 potential in original wide-band recordings, a single HF oscillation with a maximum at the central region was present. Furthermore, this component showed no phase reversal over the centro-parietal area. CONCLUSION: We therefore conclude that HF oscillations are superimposed not only on the tangential N20-P20 but on the radial P22 potential, and are generated from both tangential (area 3b) and radial (area 1) current sources.  相似文献   

16.
Previous functional imaging studies have demonstrated a number of discrete brain structures that increase activity with noxious stimulation. Of the commonly identified central structures, only the anterior cingulate cortex shows a consistent response during the experience of pain. The insula and thalamus demonstrate reasonable consistency while all other regions, including the lentiform nucleus, somatosensory cortex and prefrontal cortex, are active in no more than half the current studies. The reason for such discrepancy is likely to be due in part to methodological variability and in part to individual variability. One aspect of the methodology which is likely to contribute is the stimulus intensity. Studies vary considerably regarding the intensity of the noxious and non-noxious stimuli delivered. This is likely to produce varying activation of central structures coding for the intensity, affective and cognitive components of pain. Using twelve healthy volunteers and positron emission tomography (PET), the regional cerebral blood flow (rCBF) responses to four intensities of stimulation were recorded. The stimulation was delivered by a CO2 laser and was described subjectively as either warm (not painful), pain threshold just painful), mildly painful or moderately painful. The following group subtractions were made to examine the changing cerebral responses as the stimulus intensity increased: (1) just painful - warm; (2) mild pain - warm; and (3) moderate pain - warm. In addition, rCBF changes were correlated with the subjective stimulus ratings. The results for comparison '1' indicated activity in the contralateral prefrontal (area 10/46/44), bilateral inferior parietal (area 40) and ipsilateral premotor cortices (area 6), possibly reflecting initial orientation and plans for movement. The latter comparisons and correlation analysis indicated a wide range of active regions including bilateral prefrontal, inferior parietal and premotor cortices and thalamic responses, contralateral hippocampus, insula and primary somatosensory cortex and ipsilateral perigenual cingulate cortex (area 24) and medial frontal cortex (area 32). Decreased rCBF was observed in the amygdala region. These responses were interpreted with respect to their contribution to the multidimensional aspects of pain including fear avoidance, affect, sensation and motivation or motor initiation. It is suggested that future studies examine the precise roles of each particular region during the central processing of pain.  相似文献   

17.
Motor disorders reported in the present paper do not result from cortical ablations stricto sensu since some white matter was excised in every patient. However they appear to suggest that, as suggested by Walshe (1935), the central region and premotor area are a functional entity, i.e. they work as a whole. The extensive lesions of the premotor area, leaving untouched the motor region, have the same motor and tonic consequences as lesions limited to the central region. This point which appears specific for man does not imply that the premotor region subserves activities similar to those subserved by the central region. Rather it may suggest a deafferentiation of the central region, the consequences of which would be more important than is generally assumed. Extensive central or premotor lesions determine various tonic disorders: a well known spasticity, with exaggeration of the stretch reflex, associated with an increase in passive swinging of segments of limbs and in extensibility of joints. These two latter phenomena are usually defined as hypotonia. With premotor and precentral lesions the hypotonia disappears and a hemiplegic posture is observed. This hemiplegic posture is a dystonia which apparently does not result directly from the exaggeration of the stretch reflex. Anatomically it appears to result from lesions of both central and premotor regions. This is in agreement with Denny-Brown's (1966) contention that an extrapyramidal region lies rostral to the prerolandic sulcus. As suggested by Evarts (1973) motor regions appear to control automatic as well as voluntary movements. They probably play a role in the trophic function of muscle, since, despite rehabilitation, amyotrophy was present in every case reported in the present paper.  相似文献   

18.
An electrophysiologic mapping technique which enables identification of the central sulcus and pathologic cortical regions is described. Electrocorticographic recordings of 1 min duration were recorded from 25 patients who were undergoing resection of tumors in the sensory-motor region or being evaluated for temporal lobectomy for epilepsy. Analysis of the patterns of subdural inter-electrode coherence revealed low coherence across the central sulcus for 11/12 cases where its location could be verified with direct cortical stimulation and/or somatosensory evoked potential mapping. Regions of high coherence identified the location of tumors in the sensory-motor region for 10/10 cases. Over the temporal lobe, localized areas of high coherence were evident in 8/9 epilepsy patients, but were not indicative of the location of mesial temporal lobe tumors or inter-ictal spiking, when present. We conclude that analysis of cortical coherence patterns may be helpful for revealing the location of pathologic processes relative to critical cortical areas.  相似文献   

19.
Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.  相似文献   

20.
The cortical organization of executive control was investigated using event-related potentials (ERPs). ERPs were collected while subjects performed a go/no go task that required response inhibition. First, around 260 ms after stimulus onset, an effect of response inhibition on ERPs was observed over inferior prefrontal areas. Generators in these regions were confirmed by source analysis. Later, between 300-600 ms after stimulus onset, a left lateralized fronto-central ERP effect was found which differed in topography from a non-specific effect of task difficulty. Source analysis indicated that generators in anterior cingulate and left premotor areas also contributed to this effect. Orchestrated activation of prefrontal areas and the anterior cingulate subserves executive function whereas relatively late activity of the left premotor cortex is involved in motor control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号