首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Star-shaped block copolymers PCL-b-PMMA and PCL-b-PSt were successfully synthesized by ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) on the basis of hydroxyl-terminated cyclotriphosphazene. The star-shaped PCL was synthesized by bulk polymerization of ε-caprolactone with hydroxyl-terminated cyclotriphosphazene initiator. Star-shaped PCL was converted into a macroinitiator via esterification with 2-bromopropionyl bromide. Star-shaped block copolymers could be obtained by ATRP of methacrylate (MMA) and styrene (St). The molecular weight of these star-shaped block copolymers could be adjusted by the variation of monomer conversion.  相似文献   

2.
Y-shaped diblock copolymer polycaprolactone-block-(polystyrene)2 [PCL-b-(PSt)2] was synthesized successfully by the combination of enzymatic ring-opening polymerization (eROP) and atom transfer radical polymerization (ATRP). CH3O-terminated PCL was synthesized firstly by eROP of ε-caprolactone (ε-CL) in the presence of biocatalyst Novozyme 435 and initiator CH3OH, subsequently the resulting PCL was converted to macroinitiator by the esterification of it with 2,2-dichloro acetyl chloride (DCAC). PCL-b-(PSt)2 diblock copolymers were synthesized in an ATRP of the styrene with CuCl/2,2′-bipyridine as the catalyst system. The kinetic analysis of ATRP indicated a controlled/‘living’ radical polymerization. The structure and composition of obtained polymers were characterized with NMR, GPC and FTIR. The thermal behavior was characterized by differential scanning calorimetry (DSC).  相似文献   

3.
A biodegradable poly(ε-caprolactone)/poly(γ-benzyl l-glutamate) (PCL-b-PBLG) block copolymer was synthesized by ring-opening polymerization of N-carboxy-γ-benzyl l-glutamate anhydride (BLG-NCA) with amine-terminated poly(ε-caprolactone) (PCL-NH2) as a macroinitiator. The PCL-NH2 was prepared by deprotection of a PCL-CH2CH2NHBoc, which was obtained by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by Boc-aminoethanol (HOCH2CH2NHBoc) using stannous octanoate as catalyst under microwave irradiation. The structures of the block copolymers were determined by IR, 1H NMR, and GPC measurements. The results prove that BLG-NCA can be initiated by PCL-NH2 to produce PCL-b-PBLG block copolymers.  相似文献   

4.
The pH-responsive amphiphilic poly(ε-caprolactone)-block-poly(acrylic acid) (PCL-b-PAA) copolymer was prepared by selective hydrolysis of one novel poly(ε-caprolactone)-block-poly(methoxymethyl acrylate) (PCL-b-PMOMA) block copolymer, which was synthesized by combining ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) and atom transfer radical polymerization (ATRP) of methoxymethyl acrylate (MOMA). Selective hydrolysis of the hemiketal ester groups on the PMOMA block gave 100% deprotection without the cleavage of the PCL block. The self-assembly behavior of PCL-b-PAA was investigated by fluorescence spectroscopy, DLS and TEM. The spherical micelles were formed with the hydrophobic PCL block as the core and the hydrophilic PAA as the shell by a co-solvent evaporation method. Moreover, the size and size distribution of the micelles varied with pH value and ionic strength in aqueous solution. The cytotoxicity of the PCL-b-PAA was lower, which was confirmed by MTT assay.  相似文献   

5.
Summary A new method is reported for synthesizing AB-type diblock copolymer polycaprolactone-block-polystyrene (PCL-b-PSt) from a novel bifunctional initiator 2.2.2-trichloroethanol (TCE) by combining two different polymerization techniques: enzymatic ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Trichloromethyl terminated PCL was prepared by enzymatic ROP of ε-caprolactone (ε-CL) in the presence of Novozyme-435 and TCE as biocatalyst and initiator, respectively, and subsequently employed in ATRP of styrene (St) using CuCl/2, 2-bipyridine (bpy) as the catalyst system. The GPC and NMR analysis indicated the formation of the diblock copolymer including the biodegradable PCL block and the well-defined PSt block.  相似文献   

6.
Chemozymatic synthesis and characterization of H-shaped triblock copolymer   总被引:1,自引:0,他引:1  
The synthesis of well-defined H-shaped block copolymer based on the enzymatic ring-opening polymerization (eROP) and atom transfer radical polymerization (ATRP) is described. The dihydroxyl polycaprolactone (PCL) was synthesized by the eROP of ε-caprolactone (ε-CL) in the presence biocatalyst Novozyme 435 and initiator ethylene glycol. Subsequently, the resulting PCL was converted to tetrafunctional macroinitiator by the esterification with 2,2-dichloro acetyl chloride (DCAC). The H-shaped block copolymer was then synthesized by the ATRP of styrene. The polymers were characterized by NMR and GPC. Linear first-order kinetics, linearly increasing molecular weight with conversion, and low polydispersities observed from the ATRP of St showed that the polymerization was well controlled. (PSt)2-b-PCL-b-(PSt)2 block copolymers with varying molecular weight and controllable composition were obtained.  相似文献   

7.
Xiaoqiang Xue 《Polymer》2010,51(14):3083-1313
Here, we described a strategy for preparing well-defined block copolymers, poly(styrene)-b-poly(vinyl acetate) (PS-b-PVAc), containing middle azobenzene moiety via the combination of the reversible addition-fragmentation chain transfer (RAFT) polymerization and “click” chemistry. Firstly, a novel RAFT agent containing α-alkyne and azobenzene chromophore in R group, 2-(3-ethynylphenylazophenoxycarbonyl)prop-2-yl-9H-carbazole-9-carbodithioate (EACDT), was synthesized and used to mediate the RAFT polymerization of styrene (St). Well-defined α-alkyne end-functionalized poly(styrene) (PS) was obtained. Secondly, the RAFT polymerization of vinyl acetate (VAc) was conducted using functionalized RAFT reagent with ω-azide structure in Z group, O-(2-azidoethyl) S-benzyl dithiocarbonate (AEBDC). Well-defined ω-azide end-functionalized poly(vinyl acetate) (PVAc) was obtained. Afterwards, the resulting α-alkyne terminated PS was coupled by “click” chemistry with the azide terminated PVAc. The block copolymer, PS-b-PVAc, was obtained with tailored structures. The products from each step were characterized and confirmed by GPC, 1H NMR, IR and differential scanning calorimetry (DSC) examination. Kinetics of the trans-cis-trans isomerization from azobenzene chromophore in PS-b-PVAc and PS were investigated in CHCl3 solutions.  相似文献   

8.
Biocompatible poly(ε-caprolactone)-b-poly(vinyl alcohol) (PCL-b-PVA), poly(δ-valerolactone)-b-PVA, and poly(trimethylene carbonate)-b-PVA block copolymers were synthesized at 30 °C using a hydroxyl-functionalized xanthate reversible addition-fragmentation chain transfer (RAFT) agent, 2-hydroxyethyl 2-(ethoxycarbonothioylthio)propanoate, as a dual initiator for ring-opening polymerization (ROP) and RAFT polymerization in a one-pot procedure. The ROP of ε-caprolactone, δ-valerolactone, and trimethylene carbonate was first performed using diphenyl phosphate as the ROP catalyst followed by the RAFT polymerization of vinyl chloroacetate after quenching the ROP with 4-dimethyamino pyridine. The resulting block copolymers were aminolyzed directly to the PVA-based biocompatible block copolymers by adding hexylamine to the reaction mixture. To the best of our knowledge, this is the most convenient method for synthesizing PVA-based biocompatible block copolymers.  相似文献   

9.
Macromonomeric azo initiator containing biodegradable poly(ε-caprolactone, (PCL) was synthesized by the condensation reaction of PCL with 4,4′-azobis(4-cyanopentanoyl chloride) and methacryloyl chloride. This macromonomeric azo initiator (MIM–PCL) was further used in the polymerization of styrene (St) or methylmethacrylate (MMA) via a radical initiated process at 60°C in bulk in order to obtain polystyrene (PS)-b-PCL or poly(methyl methacrylate) (PMMA)-b-PCL crosslinked block copolymers. Thermal decomposition kinetics of MIM–PCL and its copolymers were studied by using thermogravimetric analysis and differential scanning calorimetry (DSC). DSC traces of MIM–PCL showed two different exotherms, at 98 and 127°C. The first exotherm, observed at 98°C, was due to the polymerization of the terminal methacrylic groups; the other was due to the exothermic decomposition of azo groups of MIM–PCL. PCL-b-PS and PCL-b-PMMA crosslinked block copolymers showed single glass transition temperatures due to the compatibility of the crosslinked block segments. The polymer–solvent interaction parameter of PCL in chloroform was determined by vapor pressure osmometry to be 0.1 for the PCL–chloroform system at 30°C. The average molecular weights between junction points of crosslinked homo PCL were calculated by using the Flory–Rehner equation. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1149–1157, 1998  相似文献   

10.
Poly(ε‐caprolactone)‐block‐poly(vinyl acetate) (PCL‐b‐PVAc) block copolymers were synthesized using two approaches: a ‘coupling’ approach using click chemistry reaction and a ‘macroinitiator’ route. Different copolymers, varying by their block lengths, were prepared with both methods. PCL is a semi‐crystalline polymer, and consequently PCL blocks of PCL‐b‐PVAc are able to crystallize. The purpose of this work was to analyse the influence of the method of copolymer synthesis on the crystallinity of the PCL blocks. The results indicate a significant decrease of the crystallinity of the PCL blocks in copolymers obtained using the coupling method, compared to PCL homopolymers, in contrast to copolymers obtained through the macroinitiator approach for which the crystallinity of PCL is much less affected. This influence of the synthesis method is explained by the presence, in the copolymers obtained using the click reaction, of a rigid triazol cycle binding the two blocks, limiting their mobility and decreasing the tendency of PCL to crystallize. © 2013 Society of Chemical Industry  相似文献   

11.
Summary Poly(isobutylene-b-ɛ-caprolactone) diblock and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers have been prepared and characterized. The synthesis involved the living cationic polymerization of IB, followed by capping with 1,1-diphenylethylene or 1,1-p-ditolylethylene and end-quenching with 1-methoxy-1-trimethylsiloxy-2-methyl-propene to yield methoxycarbonyl functional PIB. Hydroxyl end-functional PIB polymers were quantitatively obtained by the subsequent reduction of methoxycarbonyl end-functional PIB with LiAlH4. The structure of hydroxyl end-functional PIBs was confirmed by 1H NMR and IR spectroscopy. Poly(ɛ-caprolactone-b-isobutylene) diblock copolymers and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers were synthesized by the living cationic ring-opening polymerization of ɛ-caprolactone with hydroxyl end-functional PIB as macroinitiator in the presence of HCl•Et2O via the “activated monomer mechanism”. The block copolymers exhibited close to theoretical Mns and narrow molecular weight distributions. Received: 30 January 2002/Revised version: 19 February 2002/ Accepted: 19 February 2002  相似文献   

12.
Thermosensitive, biocompatible poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PVCL), poly(δ-valerolactone)-b-PVCL, and poly(trimethylene carbonate)-b-PVCL block copolymers were synthesized at 30 °C using a hydroxyl-functionalized xanthate reversible addition-fragmentation chain transfer (RAFT) agent, 2-hydroxyethyl 2-(ethoxycarbonothioylthio)propanoate (HECP), as a dual initiator for ring-opening polymerization (ROP) and RAFT polymerization in a one-pot procedure. The hydrophobic blocks were first synthesized by the ROP of cyclic monomers using diphenyl phosphate (DPP) as a catalyst and the RAFT polymerization of the PVCL block was followed by adding N-vinylcaprolactam (VCL) and 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V-70) as an initiator to the reaction mixture. This novel one-pot process is convenient and powerful method for the synthesis of the PVCL-based biocompatible block copolymers. The lower critical solution temperature (LCST) of the PVCL-based biocompatible block copolymer can be readily tuned by controlling the hydrophobicity of the block copolymers. By copolymerizing a hydrophilic N-vinylpyrrolidone moiety to the PVCL blocks by RAFT copolymerization, the LCST of the copolymer was matched with the body temperature for its future biomedical applications.  相似文献   

13.
Star-shaped copolymers with four and six poly(ε-caprolactone)-block-poly(N-vinylcaprolactam) (S(PCL-b-PNVCL)) arms were successfully synthesized by combining ring opening polymerization (ROP) of ε-caprolactone (CL) and reversible addition-fragmentation chain transfer (RAFT) polymerization of N-vinylcaprolactam (NVCL). The resulting star copolymers were characterized using 1H NMR, GPC and UV–vis. The numbers of arms in the star-shaped PCL-b-PNVCL block copolymers were demonstrated using degradation studies under acidic conditions, and the individual PNVCL chains were characterized by GPC and 1H NMR. In aqueous solution, star-shaped PCL-b-PNVCL block copolymers self-assembled into large aggregates or micelles with sizes varying from 54 to 300 nm, depending on the molecular weight of the copolymer and the relative lengths of the hydrophobic and hydrophilic segments. Micelles were characterized by atomic force microscopy (AFM), dynamic light scattering (DLS) and scanning electron microscopy (SEM).  相似文献   

14.
A block copolymer PCL-b-PMBC of ?-caprolactone (ε-CL) and 2-methyl-2-benzyloxycarbonyl-propylene carbonate (MBC) was synthesized by sequential ring-opening polymerization of the ε-CL and MBC monomers with amino isopropoxyl strontium (Sr-PO) as an initiator. It was debenzylated by catalytic hydrogenation to obtain a linear block copolymer PCL-b-PMCC with pendant carboxyl groups. WAXD showed that the presence of PMBC segment in PCL-b-PMBC influenced obviously the crystallizability of PCL block, in agreement with the DSC results. Diffraction peak of PCL-b-PMCC after debenzylation was hardly observed and moreover, melting enthalpy ΔHm of PCL-b-PMCC was 10.9 J/g compared to 68.0 J/g of PCL-b-PMBC, due to the replacement of the benzyl ester by the carboxyl group. The presence of carboxyl groups is expected to enhance the biodegradability of the copolymer and to facilitate a variety of medical applications.  相似文献   

15.
RAFT polymerization is a well-known approach to develop amphiphilic copolymer with less heterogeneity and narrow dispersity. Herein, an amphiphilic bioconjugated graft-block copolymer (Dextran-g-(PNIPAAm-b-PVAc)) using dextran, N-isopropyl acrylamide and vinyl acetate has been developed through RAFT polymerization. The chain length of the PVAc block has been varied to obtain the copolymers with different hydrophobic segments. The lower critical solution temperature, critical micelle concentration, and micellar stability of the synthesized copolymers have been studied in details. in-vitro cytotoxicity, as well as the in vitro release of a hydrophobic drug have been carried out to explore its suitability in the field of biomedical science. The synthesized copolymer has been found to have controlled molecular weight with narrow dispersity. It is cytocompatible toward Human cervical cancer cell line cell lines, can efficiently load a hydrophobic drug-norfloxacin, and subsequently, release in the sustained manner as manifested from in vitro release study.  相似文献   

16.
Summary  Poly(ε-caprolactone)-poly(L-lactide) (PCL-PLLA) block copolymers were synthesized via melt or solution sequential copolymerization of ε-caprolactone (ε-CL) and L-lactide (L-LA) using nontoxic dibutylmagnesium as initiator. The formation of block structure was confirmed by 1H-, 13C NMR, GPC, and FT-IR, it can be concluded that the block copolymers PCL-PLLA have been successfully synthesized by both melt and solution sequential copolymerization methods. Two melting endothermic peaks (Tm) during heating and two crystallization exothermal peaks (Tc) during cooling were observed in DSC curves. XRD patterns of the copolymers were approximately the superposition of both the PCL and PLLA homopolymers. The results indicated the coexistence of both PCL and PLLA crystalline microdomains, and the microphase separation took place in the block copolymers.  相似文献   

17.
Reversible addition–fragmentation chain transfer miniemulsion (co)polymerizations of vinyl acetate (VAc) and vinyl chloride (VC) are conducted in the presence of a fluorinated xthanate (X1). VAc miniemulsion polymerization can be well controlled by X1, and PVAc with small polydispersity index (PDI, <1.20) are obtained. X1 also shows well mediative effect to VC‐VAc miniemulsion copolymerization, while the PDI of VC‐VAc copolymer is greater than that of PVAc since a chain transfer rate to VC is greater than that to VAc. PVAc‐b‐PVC copolymers are synthesized by VC miniemulsion polymerizations mediated by X1‐terminated PVAc. PDIs of PVAc‐b‐PVC copolymers are greater than that of PVAc and VC‐VAc random copolymers with close monomer compositions, and increase with the increase of VC conversion. This is caused by the increased chain transfer to monomer and the formation of monomer‐rich and polymer‐rich phases during the VC polymerization stage. As‐prepared PVAc‐b‐PVC copolymers exhibit a micro‐phase separated morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45074.  相似文献   

18.
Ke Sha 《Polymer》2006,47(12):4292-4299
A novel bifunctional initiator 2,2,2-trichloroethanol (TCE) is used for the chemoenzymatic synthesis of AB-type diblock copolymer polycaprolactone-block-polystyrene (PCL-b-PSt) by combination of two fundamentally different synthetic techniques: enzymatic ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) and atom transfer radical polymerization (ATRP) of styrene (St). The kinetic study on the TCE-initiated enzymatic ROP of ε-CL in the presence of the biocatalyst Novozyme-435 was investigated. By optimization of the reaction conditions, TCE quantitatively initiated enzymatic ROP of ε-CL. Trichloromethyl-terminated PCL macromolecules prepared in this way were subsequently employed as macroinitiators in the ATRP of St using CuCl/2,2′-bipyridine as the catalyst system to afford well-defined AB-type diblock copolymers PCL-b-PSt. The kinetic analysis of ATRP indicated a ‘living’/controlled radical polymerization. The polymeric nanospheres were prepared by the precipitation method from two resulting PCL-PSt diblock copolymers with different content ratio of PSt to PCL. It was determined by DLS and AFM that two different diameter nanospheres had been obtained.  相似文献   

19.
An amphiphilic biodegradable three-arm star-shaped diblock copolymer containing poly(ε-caprolactone) (PCL) and poly(N-vinylpyrrolidone) (PVP) (TEA(PCL-b-PVP)3) has been successfully synthesized by the ring-opening polymerization of ε-caprolactone (ε-CL), RAFT polymerization of N-vinylpyrrolidone and a coupling reaction of PCL with carboxyl-terminated PVP (PVP-COOH). In aqueous media, the star-shaped copolymer self-assembled into spherical micelles with diameters of near 106 nm. The critical micelle concentration of TEA(PCL-b-PVP)3 copolymer was determined to be 5.96 × 10?3 mg/mL. Folic acid was then used as a model drug to incorporate into TEA(PCL-b-PVP)3 micelles, the drug loading content and encapsulation efficiency is 16.36 and 49.08 %, respectively. In vitro release experiments of the drug-loaded micelles exhibited sustained release behavior and it was affected by the pH of release media. These results indicate that the copolymer may serve as a promising “intelligent” drug delivery alternative.  相似文献   

20.
Poly(ε-caprolactone)-block-poly(N-vinyl pyrrolidone) diblock copolymers grafted from macrocyclic oligomeric silsesquioxane (MOSS) (denoted MOSS[PCL-b-PVPy]12) were synthesized via the sequential polymerizations involving ring-opening polymerization (ROP) of ε-caprolactone (CL) and RAFT/MADIX polymerization of N-vinyl pyrrolidone (NVP). The organic-inorganic brush-like diblock copolymers were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). Small angle X-ray scattering (SAXS) showed that all the MOSS[PCL-b-PVPy]12 was microphase-separated in the amorphous state. The microphase-separated morphologies were quite dependent on the length of PVPy blocks and the crystallization behavior of PCL subchains was significantly affected by the lengths of PVPy subchains. In aqueous solutions, the MOSS[PCL-b-PVPy]12 can be self-assembled into the polymeric micelles as evidenced by dynamic light scattering (DLS) and transmission election microscopy (TEM). The critical micelle concentrations of the brush-like diblock copolymers increased with increasing the lengths of PVPy blocks. It is proposed that the stability of the micellar cores was increased with the macrocyclic molecular brush structure of the diblock copolymers and the formation of the MOSS aggregates via MOSS–MOSS interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号