首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In analyzing the fracture behavior of a cracked thermoelastic material, of much importance are the effects of thermal loadings on the crack growth. Under the consideration of a medium in an opening crack, a thermal-medium crack model is proposed in this paper. The heat flux at the crack surfaces is assumed to depend on the jumps of the temperature and the elastic displacement across the crack. The thermally permeable and impermeable crack models are the limiting cases of a thermal-medium one. The proposed crack model is applied to solve the problem of a Griffith crack in a transversely isotropic material under thermal and mechanical loadings. Using two introduced displacement functions and the Fourier transform technique, the thermoelastic field and the elastic T-stress are determined in explicit forms by using elementary functions. Numerical results are presented to show the effects of the thermal conductivity inside a crack and applied mechanical loadings on the heat flux at the crack faces, the jumps of temperature across the crack and mode-II stress intensity factor in graphics respectively. The obtained results reveal that the mode-II stress intensity factor for a thermal-medium crack in a thermoelastic material depends not only on applied thermal loadings but also on applied mechanical ones.  相似文献   

2.
The orthotropic thermoelasticity problem of an antisymmetrical heat flow disturbed by three coplanar cracks is investigated in this article. Closed form solutions to the thermoelastic field components on the crack surfaces and the thermal stress intensity factors at crack tips are obtained for the case of a linear heat flow. The known solutions to the orthotropic thermoelasticity problem of a linear heat flow disturbed by a pair of coplanar cracks or a central planar crack can be deduced from the above results in a straightforward manner. It is found that extremely large magnitudes of stress singularity may occur as the distance between two adjacent cracks is approaching zero. This article and the author's previous paper [1] completely solve the plane thermoelasticity problem of an arbitrary heat flow disturbed by three coplanar cracks.  相似文献   

3.
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to have continuous spatial variations through the functionally graded medium. Developed methodology is integrated into a fracture mechanics research finite element code FRAC2D using graded finite elements that possess cubic interpolation. Steady-state and transient temperature distribution profiles in orthotropic FGMs are computed using the finite elements based heat transfer analysis software HEAT2D. EDI method is validated and domain independence is demonstrated by comparing the numerical results obtained using EDI to those calculated by an enriched finite element method and to those available in the literature. Single and periodic edge crack problems in orthotropic FGMs are examined in order to study the influences of principal thermal expansion coefficient and thermal conductivity components, relative crack length and crack periodicity on the thermal stress intensity factors. Numerical results show that among the three principal thermal expansion coefficient components, the in-plane component perpendicular to the crack axis has the most significant influence on the mode I stress intensity factor. Gradation profile of the thermal expansion coefficient parallel to the crack axis is shown to have no effect on the outcome of the fracture analysis.  相似文献   

4.
Oblique edge cracks and kinked cracks in orthotropic materials with inclined principal material directions under inplane loadings are investigated. The Stroh formalism is modified by introducing new complex functions, which recovers a classical solution for a degenerate orthotropic material with multiple characteristic roots. An orthotropy rescaling technique is presented based on the modified Stroh formalism. Stress intensity factors for edge cracks as well as kinked cracks are obtained in terms of solutions for a material with cubic symmetry by applying the orthotropy rescaling method. Explicit expressions of the stress intensity factors for a degenerate orthotropic material are obtained in terms of solutions for an isotropic material. The effects of orthotropic parameter, material orientation, and crack angle on the stress intensity factors for the degenerate orthotropic material are discussed. The stress intensity factors for cubic symmetry materials are calculated from finite element analyses, which can be used to evaluate the stress intensity factors for orthotropic materials. The energy release rate for the kinked crack in an orthotropic material is also obtained.  相似文献   

5.
Two quantitative thermoelastic strain analysis (TSA) experimental methods are proposed to determine the surface strain fields in mechanically loaded orthotropic materials using the spatial distribution of temperature gradient measured from the surface. Cyclic loadings are applied to orthotropic composite specimens to achieve adiabatic conditions. The small change in surface temperatures that resulted from the change in the elastic strain energy is measured using a high sensitivity infrared (IR) camera that is synchronized with the applied loading. The first method is applied for layered orthotropic composites with a coat layer made of isotropic or in-plane transversely isotropic material. In this case, one material parameter (pre-calibrated from the surface) is required to map the strain invariant to the temperature gradients. The proposed method can be used together with Lekhnitskii’s elasticity solution to quantify the full strain field and determine mixed-mode stress intensity factors (SIFs) for crack tips in composite plates subjected to off-axis loading. The second method is formulated for orthotropic layers without a coat and it requires thermo-mechanical calibrations for two material parameters aligned with the material axes. The virtual crack closure technique (VCCT), Lekhnitskii’s and Savin’s elasticity solutions, and finite element (FE) analyses are used for demonstrations and validations of the second experimental method. The SIFs from the TSA methods are very sensitive to the uncertainty in the location of the crack tip and the unknown inelastic or damage zone size around the crack tip. The two experimental methods are effective in generating the strain fields around notched and other FRP composites.  相似文献   

6.
通过引入适当的Westergaard应力函数,采用复变函数方法和待定系数法对含周期性裂纹正交各向异性纤维增强复合材料板的Ⅰ 型、Ⅱ型问题中裂纹尖端附近的应力场进行了力学分析。在远处对称载荷与斜对称载荷作用下,先给出Ⅰ型、Ⅱ型问题在裂纹尖端处的应力强度因子,然后导出用应力强度因子表示的Ⅰ型、Ⅱ型裂纹问题应力场的解析表达式。此外,应力场大小与材料常数有关,这是正交各向异性材料不同于各向同性材料的特征。由于裂纹的周期分布,应力强度因子的大小取决于形状因子。结果表明,形状因子随着裂纹长度的增加而增大,随着裂纹间距的增大而逐渐下降,当裂纹间距趋于无穷大时,退化为含单个中心裂纹正交各向异性纤维增强复合材料板的结果。   相似文献   

7.
We study the phenomenon of partial closure of an interface crack with heat resistance in a bimaterial with different thermal characteristics of the components subjected to the action of a tensile load and a heat flux perpendicular to the crack. The indicated phenomenon is observed if the heat flux is directed toward the material with lower thermal distortion and exceeds a certain threshold value. It is established that the region of contact of the crack lips formed in the middle of the crack and the contact pressure of the lips increase with the heat resistance of the crack. It is also shown that the stress intensity factor of normal interface stresses decreases if we neglect the effect of contact.  相似文献   

8.
This paper presents the singular characteristics of heat flux in the vicinity of the crack-tip for two dimensional transient thermoelastic fracture problems subjected to general heat transfer conditions at crack surfaces. Based on a restricted variational principle, a rigorous hybrid finite element procedure is then developed to perfectly describe the singularities of heat flux and thermal stress induced at the crack-tip. For verification purposes, the examples of transient thermoelastic problems with insulated crack surfaces are first analyzed. Excellent agreements between the computed results and referenced solutions can be drawn. To evaluate the influence of heat convection and radiation on the computation of temperature distributions and thermal stress intensity factors, several numerical examples are also presented.  相似文献   

9.
Stress intensity factors for cracks in bolted joints   总被引:1,自引:0,他引:1  
The mixed-mode stress intensity factors (SIFs) of the bolted joint with single and double cracks were examined. Changes in friction, clearance, applied force and crack angle were included in the nonlinear contact finite element analysis. A fine mesh was made between the contact surface and the crack tip in order to obtain an accurate solution. The least-squares method was used to determine the mixed-mode SIFs. Finite element results indicate that reasonable changes in the applied force, frictional coefficient and the clearance will not make significant changes in the normalized SIFs. The pure opening mode for cracked bolted joints does not occur at the horizontal crack but occurs at the crack with the crack angle between 0° and 22.5°. Nevertheless, using the SIF for a horizontal crack as the maximum opening-crack mode is sufficiently reliable. The maximum mode-II crack is approximately at a crack angle of 45° for both isotropic and orthotropic materials; however, at that angle the maximum mode-II SIF is only about one half of the mode-I SIF. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A dislocation emission mechanism for micro-crack initiation at the tip of a semi-infinite rigid line inhomogeneity in a piezoelectric solid is proposed in the present paper. For a rigid line inhomogeneity embedded in a piezoelectric matrix, dislocations of one sign are driven away from the tip due to high stress level, while the stationary dislocations of the opposite sign are left behind near the tip of the inhomogeneity. As a result, a micro-Zener–Stroh crack is initiated ahead of the line inhomogeneity. In the current study, a dislocation pileup mechanism for micro-crack initiation at the inhomogeneity tip is proposed. An interesting result is that the critical stress intensity factors for a line inhomogeneity perpendicular to the poling direction can be related to the fracture toughness of a conventional crack in the same material. Analytical solutions show that the critical plane shear stress intensity factor depends on the plane shear mechanical and displacement loadings, and the critical opening stress and electric displacement intensity factors depend on not only the mechanical and displacement loadings, but the electric field and displacement loadings as well.  相似文献   

11.
New numerical methods were presented for stress intensity factor analyses of two-dimensional interfacial crack between dissimilar anisotropic materials subjected to thermal stress. The virtual crack extension method and the thermal M-integral method for a crack along the interface between two different materials were applied to the thermoelastic interfacial crack in anisotropic bimaterials. The moving least-squares approximation was used to calculate the value of the thermal M-integral. The thermal M-integral in conjunction with the moving least-squares approximation can calculate the stress intensity factors from only nodal displacements obtained by the finite element analysis. The stress intensity factors analyses of double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load were demonstrated. Excellent agreement was achieved between the numerical results obtained by the present methods and the exact solution. In addition, the stress intensity factors of double edge cracks in jointed dissimilar anisotropic semi-infinite plates subjected to thermal loads were analyzed. Their results appear reasonable.  相似文献   

12.
This paper is concerned with the thermal fracture problem of a functionally graded orthotropic strip, where the crack is situated parallel to the free edges. All the material properties are assumed to be dependent only on the coordinate y (perpendicular to the crack surfaces). By using Fourier transform, the thermoelastic problem is reduced to those that involve a system of singular integral equations. Numerical results are presented to show the effects of the crack position and the material distribution on the thermal stress intensity factors.  相似文献   

13.
Summary The present work deals with the transient thermal stress in a transversely isotropic infinite body with an external circular crack. The surface cooling of the crack depends on position and time. Since it it usually very difficult to obtain an analytical solution for the temperature field, a finite difference formulation with respect to a tive variable is introduced. In the first step, applying this method to the general heat conduction equation in an orthotropic body, a very compact difference equation with respect to the spatial variables is obtained. In the second step, this method is applied to the transient thermoelastic problem in a transversely isotropic infinite body with an external circular crack subjected to heat exchange on the crack surface. Thermal stresses are analyzed by means of the transversely isotropic potential functions method.With 7 Figures  相似文献   

14.
Approximate weight functions are proposed and validated numerically for an orthotropic double cantilever beam (DCB) loaded in mode I. They define the stress intensity factor at the crack tip due to a pair of point forces acting on the crack surfaces and have been deduced from the corresponding isotropic result using an orthotropy rescaling technique. The weight functions allow mode I large scale bridging problems in beams and plates to be formulated as integral equations, in terms of stress intensity factors at the crack tip, without the limitations imposed on accuracy by beam theory approximations. The proposed functions are applied to investigate the influence of the orthotropy of the material on the fracture behavior of DCBs in the presence of large scale bridging.  相似文献   

15.
The fracture analysis of an electrically dielectric Griffith crack embedded in a piezoelectric layer is made under in-plane electro-mechanical loadings. To simulate an opening crack full of a dielectric interior, the energetically consistent crack-face boundary conditions are utilized. Applying the Fourier transform technique, the boundary-value problem is reduced to solving two coupling singular integral equations. The intensity factors of stress, electric displacement, crack opening displacement (COD) and electric potential are further determined by the Lobatto-Chebyshev collocation method. The variations of the electric displacement at the crack surfaces are investigated by using the energetically consistent and semi-permeable boundary conditions respectively. The observations show that the electric displacement inside the crack is decreasing with an increase of the ratio between the crack length and piezoelectric layer width. Numerical computations are further carried out to compare the intensity factors of stress and electric potential, and the energy release rate using the energetically consistent boundary conditions with those using the semi-permeable boundary conditions. The obtained results reveal that the stress induced by a dielectric inside a crack has great effects on the stress intensity factor and energy release rate, but little influence on the electric potential difference across the crack.  相似文献   

16.
In this paper, the transient temperature and thermal stresses around a partially insulated crack in a thermoelastic strip under a temperature impact are obtained using the hyperbolic heat conduction theory. Fourier and Laplace transforms are applied and the thermal and mechanical problems are reduced to solving singular integral equations. Numerical results show that the hyperbolic heat conduction parameters, the thermal conductivity of crack faces, and the geometric size of the strip have significant influence on the dynamic temperature and stress field. The results based on hyperbolic heat conduction show much higher temperature and much more dynamic thermal stress concentrations in the very early stage of impact loading comparing to the Fourier heat conduction model. It is suggested that to design materials and structures against fracture under transient thermal loading, the hyperbolic model is more appropriate than the Fourier heat conduction model.  相似文献   

17.
非均匀复合材料中反平面裂纹的动态断裂力学研究   总被引:9,自引:0,他引:9       下载免费PDF全文
对于非均匀复合材料中多个裂纹的动态断裂力学问题, 提出了一种分析方法, 假设复合材料为正交各向异性并含有多个垂直于厚度方向的裂纹, 材料参数沿厚度方向为变化的, 沿该方向将复合材料划分为许多单层, 假设单层材料参数为常数, 应用柔度矩阵/刚度矩阵方法及Fourier变换法, 在L aplace 域内推导出了控制问题的奇异积分方程组, 并用虚位移原理求解, 给出了应力强度因子及能量释放率的表达式, 然后利用Laplace 数值反演, 得出了裂纹尖端的动态应力强度因子和能量释放率。作为算例, 研究了带有两个裂纹的功能梯度结构, 分析了材料参数的优化对降低应力强度因子的意义。   相似文献   

18.
The elastodynamic response of an infinite orthotropic material with a semi-infinite crack propagating at constant speed under the action of concentrated loads on the crack faces is examined. Solution for the stress intensity factor history around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms along with the Wiener-Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form solution of the dynamic stress intensity factor. It is found that the stress intensity factor for the propagating crack is proportional to the stress intensity factor for a stationary crack by a factor similar to the universal function k(v) from the isotropic case. Results are presented for orthotropic materials as well as for the isotropic case.  相似文献   

19.
研究一种新的温度边值问题。含中心裂纹无限大板受远场均匀热流作用,热流密度方向与裂纹有一夹角。当裂纹面上维持一恒定温差时,采用复变函数理论,得出了温度场、温度应力场与位移场的解析解。利用位移单值条件,确定出温度应力强度因子的解析表达式。针对铝合金LY12 材料进行了相应数值计算,分析了热流密度大小与方向对温度分布与温度应力强度因子的影响。研究表明:该文给定的温度边界条件下,只产生Ⅰ 型温度应力强度因子,不产生Ⅱ 型温度应力强度因子。温度应力场取决于热流密度沿裂纹方向的分量,垂直于裂纹方向的分量对温度应力场没有影响。  相似文献   

20.
An isolated elliptical crack in an infinite orthotropic elastic medium is considered. An efficient numerical algorithm of the solution of the problem for a crack subjected to a constant external field is proposed. The calculation of the crack opening vector and the stress intensity factors on the crack edge is reduced to regular 2D-integrals. These integrals may be simply calculated numerically for an arbitrary orientation of the crack plane with respect to the principal axes of the anisotropy of the medium. Examples of the calculation of the crack opening vector and stress intensity factors are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号