首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B lymphocytes contain a novel population of endocytic vesicles involved in the transport of newly synthesized major histocompatibility complex (MHC) class II alpha beta chains and alpha beta peptide complexes to the cell surface. We now present evidence that these class II-enriched vesicles (CIIV) are also likely to be a site for the loading of immunogenic peptides onto MHC molecules. We used the serine protease inhibitor leupeptin to accumulate naturally occurring intermediates in the degradation of alpha beta-invariant chain complexes and to slow the intracellular transport of class II molecules. As expected, leupeptin caused an accumulation of Ii chain and class II molecules (I-A(d)) in endosomes and lysosomes. More importantly, however, it enhanced the selective accumulation of a 10-kD invariant chain fragment associated with sodium dodecyl sulfate (SDS)-labile (empty) alpha beta dimers in CIIV. This was followed by the dissociation of the 10-kD fragment, formation of SDS-stable (peptide-loaded) alpha beta dimers, and their subsequent appearance at the cell surface. Thus, CIIV are likely to serve as a specialized site, distinct from endosomes and lysosomes, that hosts the final steps in the dissociation of invariant chain from class II molecules and the loading of antigen-derived peptides onto newly synthesized alpha beta dimers.  相似文献   

2.
The precise mechanisms of failure of immunological tolerance to self proteins are not known. Major histocompatibility complex (MHC) susceptibility alleles, the target peptides, and T cells with anti-self reactivity must be present to cause autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a murine model of a human autoimmune disease, multiple sclerosis. In EAE, residues 1-11 of myelin basic protein (MBP) are the dominant disease-inducing determinants in PL/J and (PL/J x SJL/J)F1 mice. Here we report that a six-residue peptide (five of them native) of MBP can induce EAE. Using peptide analogues of the MBP-(1-11) peptide, we demonstrate that only four native MBP residues are required to stimulate MBP-specific T cells. Therefore, this study demonstrates lower minimum structural requirements for effective antigen presentation by MHC class II molecules. Many viral and bacterial proteins share short runs of amino acid similarity with host self proteins, a phenomenon known as molecular mimicry. Since a six-residue peptide can sensitize MBP-specific T cells to cause EAE, these results define a minimum sequence identity for molecular mimicry in autoimmunity.  相似文献   

3.
To identify the intracellular site(s) of formation of an endogenous class II/peptide complex in a human B cell line, we employed kinetic pulse-chase labeling experiments followed by subcellular fractionation by Percoll density gradient centrifugation and immunogold labeling on ultrathin cryosections. For direct demonstration of assembly of such complexes, we used the monoclonal antibody YAe, which detects an endogenous complex of the mouse class II molecule I-Ab with a 17-amino acid peptide derived from the alpha chain of HLA-DR (DR alpha52-68). We show that in human B lymphocytes, these class II/peptide complexes assemble and transiently accumulate in major histocompatibility complex class II-enriched compartments before reaching the cell surface.  相似文献   

4.
The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.  相似文献   

5.
Immunohistochemical techniques were used to assess major histocompatibility complex (MHC) class II expression by enterocytes and lamina propria cells in the canine intestinal tract. Duodenal enterocyte class II expression was faint and limited to the lower crypt region whereas jejunal and ileal enterocyte expression was stronger, being present in both crypt and villus areas. Enterocyte staining was of greatest intensity in crypts adjacent to Peyer's patches and intense membrane staining of most Peyer's patch lymphocytes was also seen. Enterocyte MHC class II expression in the colon was largely limited to the lower crypt region. Within the lamina propria, of all intestinal sites examined, a heterogeneous population of cells were MHC class II positive and these had morphological features of macrophages and dendritic cells. Lymphocytes, plasma cells, fibroblasts and vascular endothelium were not stained. Definition of constitutive expression of MHC class II within the canine intestine may be important in identifying upregulation of this molecule in inflammatory bowel diseases.  相似文献   

6.
The role of major histocompatibility complex (MHC) class I- and class II-restricted functions in Helicobacter pylori infection and immunity upon oral immunization was examined in vivo. Experimental challenge with H. pylori SS1 resulted in significantly greater (P 相似文献   

7.
8.
The class II-associated invariant chain peptide (CLIP) region of invariant chain (Ii) is believed to play a critical role in the assembly and transport of MHC class II alphabetaIi complexes through its interaction with the class II peptide-binding site. The role of the CLIP sequence was investigated by using mutant Ii molecules with altered affinity for the DR1 peptide-binding site. Both high- and low-affinity mutants were observed to efficiently assemble with DR1 and mediate transport to endosomal compartments in COS cell transfectants. Using N- and C-terminal truncations, a region adjacent to CLIP within Ii(103-118) was identified that can complement loss of affinity for the peptide-binding site in mediating efficient assembly of alphabetaIi. A C-terminal fragment completely lacking the CLIP region, Ii(103-216), was observed binding stably to class II molecules in immunoprecipitation studies and experiments with purified proteins. The Ii(103-118) region was required for this binding, which occurs through interactions outside of the alphabeta peptide-binding groove. We conclude that strong interactions involving Ii(103-118) and other regions of Ii cooperate in the assembly of functional alphabetaIi under conditions where CLIP has little or no affinity for the class II peptide-binding site. Our results support the hypothesis that the CLIP sequence has evolved to avoid high-stability interactions with the peptide-binding sites of MHC class II molecules rather than as a promiscuous binder with moderate affinity for all class II molecules.  相似文献   

9.
10.
The molecular mechanisms that regulate sorting of major histocompatibility complex (MHC) class II molecules into the endocytic pathway are poorly understood. For many proteins, access to endosomal compartments is regulated by cytosolically expressed sequences. We present evidence that a sequence in the lumenal domain of the MHC class II molecule regulates a very late event in class II biogenesis. Class II molecules containing single amino acid changes in the highly conserved 80-82 region of the beta chain were introduced into invariant chain (Ii)-negative fibroblasts with wild-type alpha chain, and the derived transfectants were analyzed biochemically. Using an endosomal isolation technique, we have quantified the level of class II molecules expressed in endocytic compartments and found that in the absence of Ii, approximately 15% of total cellular class II molecules can be isolated from endosomal compartments. Mutation at position 80 enhances this localization, while changes at positions 81 and 82 ablate class II expression in endosomal compartments. In addition, we have evaluated whether the induced changes in intracellular distribution of class II molecules were due to alterations in early biosynthetic events, indicative of misfolding of the molecules, or to modulation of later trafficking events more likely to be a consequence of the modulation of a specific transport event. Despite the dramatic effects on endosomal localization induced by the mutations, early biosynthetic events and maturation of class II were unaffected by the mutations. Collectively, our data argue that late trafficking events that control the ability of the class II molecule to access antigens is regulated by the 80-82 segment of the MHC class II beta chains.  相似文献   

11.
Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II-peptide complexes and, second, that most class II-associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.  相似文献   

12.
In a murine model of platelet alloimmunization, we examined the definitive role that mononuclear cells (MC) have in modulating platelet immunity by using platelets from severe combined immunodeficient (SCID) mice. CB.17 (H-2(d)) SCID or BALB/c (H-2(d)) mouse platelets were transfused weekly into fully allogeneic CBA (H-2(k)) mice and antidonor antibodies measured by flow cytometry. MC levels in BALB/c platelets were 1.1 +/- 0.6/microL and SCID mouse platelets could be prepared to have significantly lower (<0. 05/microL) MC numbers. Transfusions with 10(8) BALB/c platelets (containing approximately 100 MC/transfusion) stimulated IgG antidonor antibodies in 100% of the recipients by the fifth transfusion, whereas 10(8) SCID mouse platelets (containing approximately 5 MC/transfusion) stimulated higher-titered IgG alloantibodies by the second transfusion. When titrations of BALB/c peripheral blood MC were added to the SCID mouse platelets, levels approaching 1 MC/microL reduced SCID platelet immunity to levels similar to BALB/c platelets. Characterization of the alloantibodies showed that the low levels of MC significantly influenced the isotype of the antidonor IgG; the presence of 1 MC/microL was associated with induction of noncomplement fixing IgG1 antidonor antibodies, whereas platelet transfusions, devoid of MC (<0. 05/microL), were responsible for complement-fixing IgG2a production. When magnetically sorted defined subpopulations of MC were added to the SCID platelets, major histocompatability complex (MHC) class II positive populations, particularly B cells, were found to be primarily responsible for the reduced SCID mouse platelet immunity. The presence of low numbers of MC within the platelets was also associated with an age-dependent reduction in platelet immunogenicity; this relationship however, was not observed with SCID mouse platelets devoid of MC. The results suggest that a residual number of MHC class II positive B cells within allogeneic platelets are required for maximally reducing alloimmunization.  相似文献   

13.
BACKGROUND & AIMS: Major histocompatibility complex (MHC) class II molecules are expressed on intestinal epithelial cells, and the intensity of this expression is regulated. The aim of this study was to test the hypothesis that bile regulates the expression of MHC class II molecules on intestinal epithelium. METHODS: Rats were deprived of intestinal bile by external drainage for 24 or 48 hours, and their intestines were collected, sectioned, and stained with the anti-MHC class II monoclonal antibodies OX4 and OX6. For one group of rats, bile flow was deviated from its usual entry point to the ileum. RESULTS: Compared with intact animals, MHC class II expression was observed to be diminished within 24 hours and totally absent after 48 hours of bile drainage. For the group in which bile flow was deviated to the ileum, staining was only observed in the region distal to the entry point. Analysis by bioassay and enzyme-linked immunosorbent assay of bile showed the presence of tumor necrosis factor and interferon gamma, respectively. CONCLUSIONS: It is concluded that the presence of bile is required for the expression of MHC class II molecules on gut epithelium and that the cytokine components of bile may be the inducing agents.  相似文献   

14.
15.
Intravenous infusion of mice with viable allogeneic lymphocytes can produce donor-specific enhancement of skin graft survival, but only if the injected lymphocytes can persist in the host's recirculating lymphocyte pool for at least 3 days. We have investigated the relative roles of class I and class II MHC for C57BL/6 mice infused with lymphoid cells from co-isogenic strains mutated at class I MHC (bm1) or class II MHC (bm12), and for A.TH lymphoid cells infused into C3H (class I different, class II identical) or A.TH (class II different, class I identical). Injected cells differing from the host at class I MHC, but not at class II MHC, can be rapidly removed by host natural immune mechanisms (probably NK cells). Persistence is favored if the injected cells also carry host class I MHC, i.e., tolerance is more readily induced by injecting F1 (A x B) into A rather than B into A, consistent with the "missing self" hypothesis of NK recognition, with class I MHC being the relevant self-marker. Injected cells differing from the host at class II MHC but not at class I MHC always persist for at least 3 days, even when class I-different cells are being actively removed.  相似文献   

16.
17.
Hodgkin's disease is a common malignancy of the lymphoid system. Although the scarce Hodgkin and Reed-Sternberg (HRS) tumor cells in involved tissue synthesize major histocompatibility complex (MHC) class II and costimulatory molecules such as CD40 or CD86, it is unclear whether these tumor cells are operational antigen-presenting cells (APC). We developed an immunofluorescence-based assay to determine the number of MHC class II molecules present on the surface of single living HRS cells. We found that in fresh Hodgkin's disease lymph node biopsies, a subset of HRS cells express a substantial number of surface MHC class II molecules that are occupied by MHC class II-associated invariant chain peptides (CLIP), indicating deficient loading of MHC class II molecules with antigenic peptides. Cultured Hodgkin's disease-derived (HD) cell lines, however, were found to express few MHC class II molecules carrying CLIP peptides on the cell surface and were shown to generate sodium dodecyl sulphate (SDS)-stable MHC class II alphabeta dimers. In addition to showing deficient MHC class II antigen presentation in a subset of HRS cells, our results show that the widely used HD-cell lines are not ideal in vitro models for the disease. The disruption of MHC class II-restricted antigen presentation in HRS cells could represent a key mechanism by which these tumor cells escape immune surveillance.  相似文献   

18.
19.
Although Helicobacter pylori has been reported to stimulate the release of various cytokines from gastric tissue, it remains unknown whether normal and nontumorous gastric epithelial cells produce these cytokines. Therefore, in this study, we used a normal mouse gastric surface mucous cell line (GSM06) to determine whether gastric epithelial cells produce proinflammatory cytokines in response to H. pylori. The expression of MHC class II antigen was also examined, to investigate whether gastric epithelial cells participate in the immune response to H. pylori. In the study, GSM06 cells were incubated with H. pylori or its lipopolysaccharide (LPS). Proinflammatory cytokines were detected by Northern and Western blot analysis. The expression of MHC class II antigen was examined by fluorescence activated cell sorter (FACS) analysis. Genetic expression of proinflammatory cytokines such as interleukin-1alpha, tumor necrosis factor-alpha, and cytokine-induced neutrophil chemoattractant-2beta was enhanced by both intact and sonicated H. pylori, but not by H. pylori LPS. The expression of MHC class II antigen was induced by H. pylori more strongly than by interferon-gamma. We conclude that H. pylori induces the expression of proinflammatory cytokines and MHC class II antigen in gastric epithelial cells. Gastric epithelial cells may act as antigen-presenting cells and participate in the immune response to H. pylori infection.  相似文献   

20.
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B-/- or Cat D-/- antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B-/- splenocytes, as it did in Cat D-/- cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号