共查询到14条相似文献,搜索用时 15 毫秒
1.
P.J. TADROUS 《Journal of microscopy》2010,237(2):192-199
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z‐stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a ‘synthetic PSF’ in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub‐resolution bead suffers from low signal‐to‐noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z‐stack through a thin sample. This Z‐stack is deconvolved by an idealized point spread function derived from the same Z‐stack to yield a point spread function of high signal‐to‐noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non‐blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the ‘extracted PSF’) to a synthetic point spread function. Restoration of both high‐ and low‐contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function. 相似文献
2.
We present a novel approach for deconvolution of 3D image stacks of cortical tissue taken by mosaic/optical‐sectioning technology, using a transmitted light brightfield microscope. Mosaic/optical‐sectioning offers the possibility of imaging large volumes (e.g. from cortical sections) on a millimetre scale at sub‐micrometre resolution. However, a blurred contribution from out‐of‐focus light results in an image quality that usually prohibits 3D quantitative analysis. Such quantitative analysis is only possible after deblurring by deconvolution. The resulting image quality is strongly dependent on how accurate the point spread function used for deconvolution resembles the properties of the imaging system. Since direct measurement of the true point spread function is laborious and modelled point spread functions usually deviate from measured ones, we present a method of optimizing the microscope until it meets almost ideal imaging conditions. These conditions are validated by measuring the aberration function of the microscope and tissue using a Shack‐Hartmann sensor. The analysis shows that cortical tissue from rat brains embedded in Mowiol and imaged by an oil‐immersion objective can be regarded as having a homogeneous index of refraction. In addition, the amount of spherical aberration that is caused by the optics or the specimen is relatively low. Consequently the image formation is simplified to refraction between the embedding and immersion medium and to 3D diffraction at the finite entrance pupil of the objective. The resulting model point spread function is applied to the image stacks by linear or iterative deconvolution algorithms. For the presented dataset of large 3D images the linear approach proves to be superior. The linear deconvolution yields a significant improvement in signal‐to‐noise ratio and resolution. This novel approach allows a quantitative analysis of the cortical image stacks such as the reconstruction of biocytin‐stained neuronal dendrites and axons. 相似文献
3.
The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200×. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. 相似文献
4.
Dey N Blanc-Feraud L Zimmer C Roux P Kam Z Olivo-Marin JC Zerubia J 《Microscopy research and technique》2006,69(4):260-266
Confocal laser scanning microscopy is a powerful and popular technique for 3D imaging of biological specimens. Although confocal microscopy images are much sharper than standard epifluorescence ones, they are still degraded by residual out-of-focus light and by Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes maximum likelihood estimation adapted to Poisson statistics. As this algorithm tends to amplify noise, regularization constraints based on some prior knowledge on the data have to be applied to stabilize the solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularization constraint based on Total Variation, which suppresses unstable oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results as compared with the unregularized Richardson-Lucy algorithm, both visually and quantitatively. 相似文献
5.
Refractive index mismatch between the specimen and the objective immersion oil results in spherical aberration, which causes distortion and spreading of the point spread function, as well as incorrect readings of the axial coordinates. These effects have to be taken into account when performing three-dimensional restoration of wide-field fluorescence images. By using objects with well-defined geometry (fluorescently stained Escherichia coli or actin filaments) separated from a cover slip by a layer of oil with known refractive index, we investigated the accuracy of three-dimensional shape restoration by the commercial programs Huygens and Autoquant. Aberration correction available in the software dramatically reduced the axial blur compared to deconvolution that ignored the refractive index mismatch. At the same time, it failed to completely recover the cylindrical symmetry of bacteria or of actin fibres, which showed up to a three to five times larger width along the optical axis compared to the lateral plane. The quality of restoration was only moderately sensitive to the exact values of the specimen refractive index but in some cases improved significantly by assuming a reduced NA of the objective. Because image restoration depends on the knowledge of the vertical scale, we also performed detailed measurements of the axial scaling factor and concluded (in agreement with some previous authors) that scaling is adequately described by the simple paraxial formula, even when high-NA oil-immersion objectives are used. 相似文献
6.
We have measured the point-spread function (PSF) for an MRC-500 confocal scanning laser microscope using subresolution fluorescent beads. PSFs were measured for two lenses of high numerical aperture—the Zeiss plan-neofluar 63 × water immersion and Leitz plan-apo 63 × oil immersion—at three different sizes of the confocal detector aperture. The measured PSFs are fairly symmetrical, both radially and axially. In particular there is considerably less axial asymmetry than has been demonstrated in measurements of conventional (non-confocal) PSFs. Measurements of the peak width at half-maximum peak height for the minimum detector aperture gave approximately 0·23 and 0·8 μm for the radial and axial resolution respectively (4·6 and 15·9 in dimensionless optical units). This increased to 0·38 and 1·5 μm (7·5 and 29·8 in dimensionless units) for the largest detector aperture examined. The resulting optical transfer functions (OTFs) were used in an iterative, constrained deconvolution procedure to process three-dimensional confocal data sets from a biological specimen—pea root cells labelled in situ with a fluorescent probe to ribosomal genes. The deconvolution significantly improved the clarity and contrast of the data. Furthermore, the loss in resolution produced by increasing the size of the detector aperture could be restored by the deconvolution procedure. Therefore for many biological specimens which are only weakly fluorescent it may be preferable to open the detector aperture to increase the strength of the detected signal, and thus the signal-to-noise ratio, and then to restore the resolution by deconvolution. 相似文献
7.
In recent years, cell biologists have benefited greatly from using confocal microscopy to study intracellular organelles. For high-level image analysis, 3D boundary extraction of cell structure is a preliminary requisite in confocal cellular imaging. To detect the object boundaries, most investigators have used gradient/Laplacian operator as a principal tool. In this paper we propose a higher order statistics (HOS) based boundary extraction algorithm for confocal cellular image data set using kurtosis. After the initial pre-processing, kurtosis boundary map is estimated locally for the entire volume using a cubic sliding window and subsequently the noisy kurtosis value is removed by thresholding. Voxels having positive kurtosis value with zero-crossing on its surface are then identified as boundary voxels. Typically used in signal processing, kurtosis for 3D cellular image processing is a novel application of HOS. Its reliable and robust nature of computing makes it very suitable for volumetric cellular boundary extraction. 相似文献
8.
The conventional approach for microscopic 3D cellular imaging is based on axial through-stack image series which has some significant limitations such as anisotropic resolution and axial aberration. To overcome these drawbacks, we have recently introduced an alternative approach based on micro-rotation image series. Unfortunately, this new technique suffers from a huge burden of computation that makes its use quite difficult for current applications. To address these problems we propose a new imaging strategy called bi-protocol, which consists of coupling micro-rotation acquisition and conventional z-stack acquisition. We experimentally prove bi-protocol 3D reconstruction produces similar quality to that of pure micro-rotation, but offers the advantage of reduced computation burden because it uses the z-stack volume to accelerate the registration of the micro-rotation images. 相似文献
9.
Optical-sectioning, digital fluorescence microscopy provides images representing temporally- and spatially-resolved molecular-scale details of the substructures of living cells. To render such images into solid models for further computational analyses, we have developed an integrated system of image acquisition, processing, and rendering, which includes a new empirical technique to correct for axial distortions inherent in fluorescence microscopy due to refractive index mismatches between microscope objective immersion medium, coverslip glass, and water. This system takes advantage of the capabilities of ultra-high numerical aperture objectives (e.g. total internal reflection fluorescence microscopy) and enables faithful three-dimensional rendering of living cells into solid models amenable to further computational analysis. An example of solid modeling of bovine aortic endothelial cells and their nuclei is presented. Since many cellular level events are temporally and spatially confined, such integrated image acquisition, processing, rendering, and computational analysis, will enable, in silico, the generation of new computational models for cell mechanics and signaling. 相似文献
10.
11.
Gradients play an important role in 2D image processing. Many edge detection algorithms are gradient‐based. We are interested in 3D boundary detection which can be considered as an extension of 2D edge detection in 3D space. In this paper, an algorithm to automatically and quantitatively measure the suitability of gradient magnitudes in detection of 3D boundary points of confocal image stacks is presented. A Measurement Function is defined to evaluate the suitability of each gradient magnitude chosen to be the threshold for 3D boundary detection. The application of Gauss's Divergence Theorem provides a solution to calculate the Measurement Function numerically. The gradient magnitude at which the maximum of the Measurement Function is achieved can be utilized as the most appropriate threshold for gradient‐based boundary detection and other operations like volume visualization. 相似文献
12.
R. EILS E. BERTIN K. SARACOGLU B. RINKE E. SCHR
CK F. PARAZZA Y. USSON M. ROBERT-NICOUD E. H. K. STELZER J.-M. CHASSERY T. CREMER C. CREMER 《Journal of microscopy》1995,177(2):150-161
This study demonstrates the use of Voronoi tessellation procedures to obtain quantitative morphological data for chromosome territories in the cell nucleus. As a model system, chromosomes 7 and X were visualized in human female amniotic fluid cell nuclei by chromosomal in situ suppression hybridization with chromosome-specific composite probes. Light optical serial sections of 18 nuclei were obtained with a confocal scanning laser fluorescence microscope. A three-dimensional (3-D) tessellation of the image volumes defined by the stack of serial sections was then performed. For this purpose a Voronoi diagram, which consists of convex polyhedra structured in a graph environment, was built for each nucleus. The chromosome territories were extracted by applying the Delaunay graph, the dual of the Voronoi diagram, which describes the neighbourhood in the Voronoi diagram. The chromosome territories were then described by three morphological parameters, i.e. volume, surface area and a roundness factor (shape factor). The complete evaluation of a nucleus, including the calculation of the Voronoi diagram, 3-D visualization of extracted territories using computer graphic methods and parameterization was carried out on a Silicon Graphics workstation and was generally completed within 5 min. The geometric information obtained by this procedure revealed that both X- and 7-chromosome territories were similar in volume. Roundness factors indicated a pronounced variability in interphase shape for both pairs of chromosomes. Surface estimates showed a significant difference between the two X-territories but not between chromosome 7-territories. 相似文献
13.
D. Knig S. Carvajal-Gonzalez A. M. Downs J. Vassy P. Rigaut 《Journal of microscopy》1991,161(3):405-433
Within the concept of point processes, a review is presented of quantities which can be used in studies of three-dimensional (3-D) aggregates of particles. Suitable characteristics and estimators are given for both unmarked and marked point processes. To demonstrate the feasibility of such quantitative approaches, an application in histology, dealing with 3-D arrangements of cell nuclei in rat liver, is described. Using a confocal scanning light microscope, 3-D images are recorded and image analysis used to obtain the coordinates of the centroid, together with the volume and DNA content, of each cell nucleus. Examples of results are given, using both unmarked and marked point processes. In the latter case, cell type, nuclear volume and ploidy group are suitable marks. 相似文献