共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
为解决水性颜料色浆对Lyocell纤维纺丝液造成的凝固问题,制备了NMMO基超细炭黑色浆,利用其对Lyocell纤维进行原液着色。针对Lyocell纤维原液着色用超细炭黑的制备展开研究,探讨了分散剂的结构及用量,炭黑质量分数,水和NMMO组成混合溶剂中水的质量分数,超声波处理功率及时间对NMMO基超细炭黑的粒径、粒度分布及分散稳定性的影响。结果表明,以实验室自制的分散剂SP制备的NMMO基超细炭黑具有最小的粒径及优良的分散稳定性,与纺丝液相容性最好。通过正交试验优化得到NMMO基超细炭黑的制备工艺:分散剂对炭黑的质量分数2为20 %,炭黑对体系的质量分数为10 %,超声波处理时间为20 min,功率为800 W。 相似文献
4.
为解决纤维素绿色溶剂N-甲基吗啉-N-氧化物(NMMO)传统浓缩回收工艺存在的能耗高、回收率低等不足,提出基于减压膜蒸馏(VMD)技术的NMMO浓缩回收方法。通过考察VMD过程中真空度、料液流速、料液温度、料液浓度对膜蒸馏过程的影响,并对深度浓缩的可行性和体系运行稳定性进行研究。结果表明:膜蒸馏通量随真空度、料液流速、料液温度的增大而增大,随料液浓度的增大而减小,产水浓度随真空度的增大而减小,而料液流速、料液温度、料液浓度对产水浓度影响不明显;采用VMD过程可成功将初始质量浓度为100 g/L的NMMO溶液浓缩至467.2 g/L,体系在连续5个浓缩周期共60 h的运行过程中,保持了较好的运行稳定性,对NMMO的截留率始终保持在99.88%以上。所提方法具有良好的技术可行性。 相似文献
5.
为制备兼具阻燃和吸湿性能的纤维,采用N-甲基吗啉-N-氧化物(NMMO)水溶液为共溶剂,分别将纤维素(cellulose)和聚芳砜酰胺(PSA)溶解后进行共混制备纺丝液,通过干喷湿法纺丝制备PSA/cellulose共混纤维,并对纺丝液及共混纤维的结构和性能进行表征与分析。结果表明:NMMO对PSA具有良好的溶解性能,纺丝液均质、稳定,制备的共混纤维呈现出PSA富集于纤维表层的类皮-芯结构;PSA/cellulose纤维具有良好的阻燃性能、吸湿性能和力学性能,当纤维素质量分数达到30%时,共混纤维仍可达到阻燃纤维标准,其断裂强度为2.08 cN/dtex,无需后道牵伸处理就能达到较高的强度,此时PSA/cellulose纤维的回潮率提高为8%,具有良好的可染性。 相似文献
6.
7.
8.
在不同N-甲基吗啉-N-氧化物(NMMO)体积分数[φ(NMMO)]、温度和时间条件下,考察苎麻纤维在NMMO水溶液中的溶解和溶胀情况.结果表明:在90℃条件下,当φ(NMMO)≥70%时,苎麻纤维被迅速切断并溶解,没有明显的溶胀现象;当φ(NMMO)=30%~60%时,苎麻纤维只发生溶胀,其溶胀增大率比水溶胀高;当φ(NMMO)20%时,苎麻纤维发生水溶胀.在60~80℃条件下,当φ(NMMO)=30%~80%时,苎麻纤维发生溶胀,其直径增大率最高达到210%;当φ(NMMO)20%时,苎麻纤维发生水溶胀,其直径增大率为100%.研究表明:随着处理时间的延长,苎麻纤维的直径增大率逐渐上升,达到最大值后保持不变;随着φ(NMMO)的增加,苎麻纤维的直径增大率升高;随着温度的升高,苎麻纤维直径增大率到达最大值的时间提前. 相似文献
9.
10.
将高级脱胶助剂STJ-2用于苎麻脱胶工艺,通过以各种影响因素的试验研究与分析测试,选取最佳工艺路线,为该助剂的扩大生产及广泛应用打下基础。 相似文献
11.
12.
为了确定利用筛选得到的优良菌种——黑曲霉An.6进行苎麻脱胶的最佳工艺条件,采用摇瓶发酵培养的方法,对影响苎麻微生物脱胶的主要因素进行研究。结果表明,用黑曲霉An.6进行苎麻脱胶的适宜条件是以未经刮制的苎麻韧皮作为主要C源,以0.4%麸皮作为附加C源,0.5%(NH4)2SO4作为N源,0.05%MgSO4、0.05%KCl、0.1%K2HPO4、0.001?SO4作为矿物源;在30℃下,150 r/min处理36~40 h左右,脱胶麻的残胶率平均为14.42%。将微生物脱胶麻用0.5%NaOH于0.1 MPa下处理30 min,精干麻的残胶率为1.33%,达到纺织工业生产要求。 相似文献
13.
苎麻作为我国重要纺织用纤维素纤维资源,其经常进行化学成分定量分析工作,因此需要一种快速高效的定量分析手段。本研究在前期工作的基础上,使用AOTF近红外光谱仪,利用近红外漫反射光谱(NIR)技术,采用偏最小二乘法(PLS),并对比近红外样品厚度对建模的影响,建立了测定苎麻纤维素及胶质含量的NIR校正模型。实验结果表明,所建苎麻化学成分NIR模型预对纤维素含量预测平均相对误差为1.11%,胶质含量预测平均相对误差为4.54%,预测值与化学值误差较小,可以进行苎麻纤维素及胶质含量预测工作。同时发现,样品厚度越大,所扫描得到光谱所建模型预测精确度越高。 相似文献
14.
对微生物一化学联合脱胶方法进行了初步探讨。在脱胶工艺中。预处理时利用了高温高压预处理、微生物脱胶时微生物采用混合茵种。通过对脱胶后纤维性质的比较,说明了微生物化学联合脱胶方法的可行性。 相似文献
15.
为了减轻苎麻化学脱胶造成的环境污染,提高苎麻纤维可纺性能,采用酶化学联合脱胶法进行苎麻脱胶,分析酶脱胶过程中pH值、浴比、酶用量、金属离子、温度和时间对苎麻脱胶的影响,同时对浴比、酶用量、温度和时间进行4因素3水平的正交试验,采用优化后的工艺对苎麻进行酶脱胶、化学精练和漂洗。结果表明,苎麻在用KDN果胶酶第1步脱胶(浴比为1∶12,pH值为8.6,1 mmol/LMg2+,KDN果胶酶300 IU/g,45℃、4 h),TZ-888复合酶第2步脱胶(浴比为1∶18,pH值为4.0,1 mmol/L Ca2+,TZ-888复合酶500 IU/g,40℃,5 h)后残胶率为14.14%,进行化学精练和漂洗后最终残胶率为1.79%。 相似文献
16.
17.
采用L18(36)正交实验,将芽孢杆菌B2和曲霉M2两种菌株的种子液混合对苎麻脱胶,确定两种菌株联合脱胶的最优工艺条件为:芽孢杆菌B2和曲霉M2的种子液接种量分别为6%和11%,水料比为15∶1(mL/g),脱胶初始pH值为6,温度35℃,脱胶时间50h。在最佳条件下处理后的苎麻纤维脱胶率可达到31.9%,纤维细度和纤维断裂强度均符合二级精干苎麻的标准。利用红外光谱法和电镜扫描测试分析,结果证明经过生物酶脱胶后,得到了光滑、平整、纤细的苎麻纤维,其胶质复合体的分子结构发生了明显变化。 相似文献