首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The development of pulsatile ventricular assist devices for children has been limited mainly by size constraints. The purpose of this study was to evaluate the MEDOS trileaflet-valved, pulsatile, pediatric right ventricular assist device (stroke volume = 9 mL) in a neonatal lamb model of acute right ventricular failure. METHODS: Right ventricular failure was induced in ten 3-week-old lambs (8.6 kg) by right ventriculotomy and disruption of the tricuspid valve. Control group 1 (n = 5) had no mechanical support whereas experimental group 2 (n = 5) had right ventricular assist device support for 6 hours. The following hemodynamic parameters were measured in all animals: heart rate and right atrial, pulmonary arterial, left atrial, and systemic arterial pressures. Cardiac output was measured by an electromagnetic flow probe placed on the pulmonary artery. RESULTS: All results are expressed as mean +/- standard deviation and analyzed by Student's t test. A p value less than 0.05 was considered statistically significant. Base-line measurements were not significantly different between groups and included systemic arterial pressure, 80.6 +/- 12.7 mm Hg; right atrial pressure, 4.6 +/- 1.6 mm Hg; mean pulmonary arterial pressure, 15.6 +/- 4.2 mm Hg; left atrial pressure, 4.8 +/- 0.8 mm Hg; and cardiac output, 1.4 +/- 0.2 L/min. Right ventricular injury produced hemodynamics compatible with right ventricular failure in both groups: mean systemic arterial pressure, 38.8 +/- 10.4 mm Hg; right atrial pressure, 16.8 +/- 2.3 mm Hg; left atrial pressure, 1.4 +/- 0.5 mm Hg; and cardiac output, 0.6 +/- 0.1 L/min. All group 1 animals died at a mean of 71.4 +/- 9.4 minutes after the operation. All group 2 animals survived the duration of study. Hemodynamic parameters were recorded at 2, 4, and 6 hours on and off pump, and were significantly improved at all time points: mean systemic arterial pressure, 68.0 +/- 13.0 mm Hg; right atrial pressure, 8.2 +/- 2.3 mm Hg; left atrial pressure, 6.4 +/- 2.1 mm Hg; and cardiac output, 1.0 +/- 0.2 L/min. CONCLUSIONS: The results demonstrate the successful creation of a right ventricular failure model and its salvage by a miniaturized, pulsatile right ventricular assist device. The small size of this device makes its use possible even in small neonates.  相似文献   

2.
Treatment of severe respiratory failure by extracorporeal membrane oxygenation (ECMO) is complex. However, there is now an intravascular gas exchanger (IVOX) available that provides extrapulmonary gas transfer without requiring an extracorporeal blood path. The present study was performed to determine the hemodynamic effects resulting from the intracaval placement of the intravascular device. A bovine model (n = 6; body-weight = 72 +/- 5 kg) was selected for temporary lung support with the intravascular device. The latter was placed in the caval axis under fluoroscopic control after full instrumentation of the animal for hemodynamic measurements including a pulmonary artery catheter for determination of cardiac output by thermodilution and continuous readout of mixed venous oxygen saturation. All measurements were taken after a stabilization period of 15 min. The heart rate moved from 65 +/- 8 before to 72 +/- 10 after implantation and 68 +/- 9 after onset of intravascular gas exchange (NS). Right atrial pressure was 13 +/- 3 mm Hg before, 12 +/- 3 mm Hg after implantation and 10 +/- 3 mm Hg after onset (NS) whereas femoral venous pressure moved from 14 +/- 3 mm Hg to 17 +/- 4 mm Hg (p < 0.05) and remained at 17 +/- 4 mm Hg after onset. Cardiac output was 5.3 +/- 0.7 l/min before, 5.4 +/- 0.7 l/min after implantation and 5.3 +/- 1.1 l/min after onset (NS) while mixed venous oxygen saturation dropped from 60 +/- 7% to 54 +/- 11% and moved to 57 +/- 11 after onset of the device (NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To our knowledge postoperative hepatic hemodynamics and hepatic metabolism have not been fully studied on a long-term basis. Our goal was to develop a large animal model that would permit the measurement of hepatic blood flow (BF), perihepatic pressures (P), and hepatic metabolism in a long-term setting. Catheters were inserted into the jugular vein, carotid artery, pulmonary artery, hepatic vein, and portal vein (PV) of 27 commercially bred pigs; ultrasonic transit time flowmeter probes were placed around the hepatic artery and PV. Daily postoperative measurements of jugular vein P, carotid artery P, pulmonary artery P, hepatic vein P, and PVP, as well as hepatic artery BF and PVBF, were recorded for 20 days. Hepatic carbohydrate metabolism was assessed by arteriovenous difference techniques. Jugular vein P, pulmonary artery P, hepatic vein P, PVP, and heart rate reached steady-state values during the first week, with a mean +/- SEM of 1.0 +/- 0.3 mm Hg for jugular vein P, 21.4 +/- 2.1 mm Hg for pulmonary artery P, 4.3 +/- 0.4 mm Hg for HVP, 7.8 +/- 0.5 mm Hg for PVP, and 116 +/- 4 beats per minute for heart rate. Mean carotid artery P increased from 65 +/- 3 mm Hg during surgery to 94 +/- 2 mm Hg on postoperative day 1 (P < 0.001) and to a mean 101 +/- 2 mm Hg thereafter. Total hepatic BF reached a steady-state value of 1,132 +/- 187 ml/min by postoperative day 7 (P = 0.19). Over week 1 hepatic artery BF measured as a percentage of total hepatic BF decreased from 35.0 +/- 3.0% to 15.5 +/- 2.7%, and PVBF increased from 65.0 +/- 3.0% to 84.5 +/- 2.7% (P < 0.005); both variables were steady thereafter. In the hemodynamic steady state the net hepatic balances of glucose, lactate, glycerol, and alanine in 5 pigs were 9.9 +/- 4.0, -4.2 +/- 0.4, -2.3 +/- 1.1, and -0.68 +/- 0.22 micromol/kg per min respectively. The net gut (portal-drained viscera) balances of glucose, lactate, alanine, and glycerol were -2.0 +/- 2.5, 1.1 +/- 0.5, 0.73 +/- 0.18, and -0.69 +/- 0.19 micromol/kg per min respectively. Thus, a reliable large animal model was developed to study acute and chronic hepatic hemodynamics and metabolism.  相似文献   

4.
The short- and mid-term hemodynamic effects of transjugular intrahepatic portosystemic shunt (TIPS) were studied in 16 sedated cirrhotic patients. Indications included relapsing variceal bleeding (n = 10) and refractory ascites (n = 6). The decrease of porto-atrial pressure gradient (from 20.4 +/- 4.2 mm Hg to 10.1 +/- 2.4 mmHg; P < .05) was associated with an increase of mean pulmonary artery pressure (MPAP) (from 12.3 +/- 3.0 mm Hg to 20.3 +/- 5.3 mm Hg; P < .05) and of right atrial pressure (RAP) from 3.4 +/- 2.6 mm Hg to 8.3 +/- 3.7 mm Hg; P < .05), whereas right ventricular end-diastolic volume (RVEDVI) remained unchanged. The significant increase of cardiac index (CI) (from 4.5 +/- 1.2 L/min/m2 to 5.0 +/- 1.1 L/min/m2; P < .05) was essentially attributable to an increase of heart rate (HR) (from 81 +/- 11 to 88 +/- 10 beats/min; P < .05). Systemic vascular resistance (SVR) decreased (from 812 +/- 281 to 666 +/- 191 dynes/sec/cm5; P < .05), whereas pulmonary vascular resistance (PVR) increased (from 60.6 +/- 29.6 to 82.0 +/- 34.6 dynes/sec/cm5; P < .05). After transient shunt occlusion with a balloon catheter, all of the hemodynamic parameters returned to baseline values, except pulmonary artery pressure, which also decreased but remained significantly increased. One month after TIPS, pulmonary pressure remained elevated, and CI further increased. It is concluded that increased PVR is the major hemodynamic alteration occurring after TIPS placement. It correlates with the decrease of porto-atrial gradient and is probably mediated by both mechanical and neurohumoral factors.  相似文献   

5.
To evaluate hemodynamic effectiveness and physiologic changes on the HeartMate 1000 IP left ventricular assist device (Thermo Cardiosystems, Inc., Woburn, Mass.), we studied 25 patients undergoing bridge to heart transplantation (35 to 63 years old, mean 50 years). All were receiving inotropic agents before left ventricular assist device implantation, 21 (84%) were supported with a balloon pump, and 7 (28%) were supported by extracorporeal membrane oxygenation. Six patients died, primarily of right ventricular dysfunction and multiple organ failure. Nineteen (76%) were rehabilitated, received a donor heart, and were discharged (100% survival after transplantation). Pretransplantation duration of support averaged 76 days (22 to 153 days). No thromboembolic events occurred in more than 1500 patient-days of support with only antiplatelet medications. Significant hemodynamic improvement was measured (before implantation to before explantation) in cardiac index (1.7 +/- 0.3 to 3.1 +/- 0.8 L/min per square meter; p < 0.001), left atrial pressure (23.7 +/- 7 to 9 +/- 7.5 mm Hg; p < 0.001), pulmonary artery pressure, pulmonary vascular resistance, and right ventricular volumes and ejection fraction. Both creatinine and blood urea nitrogen levels were significantly higher before implantation in patients who died while receiving support. Renal and liver function returned to normal before transplantation. We conclude that support with the HeartMate device improved hemodynamic and subsystem function before transplantation. Long-term support with the HeartMate device has a low risk of thromboemboli and makes a clinical trial of a portable HeartMate device a realistic alternative to medical therapy.  相似文献   

6.
Complete resolution of major pulmonary embolism (PE) treated with heparin alone can often take > 3 weeks. Thrombolytic agents effectively resolve pulmonary artery thrombi within a few hours. However, the effect of the 2 types of treatment on recovery of right ventricular function has not yet been followed for periods of > 24 hours. We prospectively examined 40 consecutive patients with documented major PE (symptoms being present for < or = 8 weeks). After diagnosis, 27 patients (68%) were treated with alteplase plus heparin and 13 (32%) with heparin alone. There was no significant difference between the 2 groups with regard to baseline parameters. At 12 hours, systolic pulmonary artery pressure decreased from 56 +/- 20 to 37 +/- 21 mm Hg in the alteplase group, and from 50 +/- 11 to 46 +/- 12 mm Hg in the heparin group (significantly more; p = 0.016). On echocardiographic follow-up, a decrease in end-diastolic dimensions of the right ventricle and an increase in left ventricular dimensions was significantly more pronounced in the alteplase group (p <0.001 and p = 0.05, respectively). The incidence of right ventricular dilation and paradoxical septal wall motion decreased significantly only in the thrombolyis group. However, at 1-week follow-up, no difference was seen between the 2 groups regarding the overall change in right or left ventricular dimensions or the final values of other echocardiographic parameters. Thus, echocardiography is particularly useful for hemodynamic follow-up of major PE. Thrombolysis may rapidly reduce pulmonary artery pressure, but resolution of right ventricular pressure overload also occurs within 1 week in patients treated with heparin alone.  相似文献   

7.
BACKGROUND AND METHODS: To find an intra-abdominal pressure (IAP) range for laparoscopic procedures that elicits only moderate splanchnic and pulmonary hemodynamic and metabolic changes, including hepatic and intestinal tissue pH and superficial hepatic blood flow, we installed an IAP of 7 and 14 mm Hg each for 30 minutes in 10 healthy pigs (30 +/- 4 kg). RESULTS: In parallel with the increase of IAP, the mean transmural pulmonary artery pressure increased (from 25 +/- 3 to 27 +/- 4 at 7 mm Hg IAP and 30 +/- 6 mm Hg at 14 mm Hg IAP, p < 0.05); the pulmonary artery-to-pulmonary capillary wedge pressure gradient also increased (from 17 +/- 2.7 to 21 +/- 3 mm Hg at 7 mm Hg IAP and 24 +/- 4.2 mm Hg at 14 mm Hg IAP, p < 0.01), and the arterial oxygenation decreased (p < 0.005). Relevant changes at an IAP of 14 mm Hg were observed in right atrial pressure during inspiration (from 7 +/- 2 to 12 +/- 3 mm Hg, p < 0. 0001) and in abdominal aortic flow (from 1.43 +/- 0.4 to 1.19 +/- 0. 3 L/min, p < 0.01). However, transmural right atrial pressure and cardiac output remained essentially unchanged. Portal and hepatic venous pressure increased in parallel with the IAP (portal: from 12 +/- 3 to 17 +/- 3 at 7 mm Hg IAP and 22 +/- 3 mm Hg at 14 mm Hg IAP, p < 0.01; hepatic venous: from 8 +/- 3 to 14 +/- 6 at 7 mm Hg IAP and 19 +/- 6 mm Hg at 14 mm Hg IAP, p < 0.005), but the transmural portal and hepatic venous pressures decreased (p < 0.01), indicating decreased venous filling. Portal flow was maintained at 7 mm Hg but decreased at 14 mm Hg from 474 +/- 199 to 395 +/- 175 mL/min (p < 0. 01), whereas hepatic arterial flow remained stable. Hepatic superficial blood flow decreased during insufflation and increased after desufflation. Tissue pH fell together with portal and hepatic venous pH (intestinal: from 7.323 +/- 0.05 to 7.217 +/- 0.04; hepatic: from 7.259 +/- 0.04 to 7.125 +/- 0.06, both p < 0.01) at 14 mm Hg. CONCLUSION: The hemodynamic and metabolic derangement in the pulmonary and splanchnic compartments are dependent on the extent of carbon dioxide pneumoperitoneum. The effect of low IAP (7 mm Hg) on splanchnic perfusion is minimal. However, higher IAPs (14 mm Hg) decrease portal and superficial hepatic blood flow and hepatic and intestinal tissue pH.  相似文献   

8.
BACKGROUND: In most cases of transposition of the great arteries with ventricular septal defect and left ventricular outflow tract obstruction, a Lecompte procedure (réparation à l'étage ventriculaire) is possible without interposition of a conduit between the right ventricle and pulmonary artery. However, the anterior location of the pulmonary arteries after the Lecompte maneuver may be a potential cause for right ventricular outflow obstruction, which continues to be reported in 5% to 25% of cases. We have used a tubular segment of aortic autograft to connect the pulmonary artery, left in the orthotopic posterior position (without the Lecompte maneuver), to the right ventricle in 10 consecutive patients with transposition, ventricular septal defect, and left ventricular outflow tract obstruction. METHODS: Ten consecutive patients aged 2 months to 11 years (mean 32 months) have undergone a modified Lecompte operation. Eight had severe pulmonary stenosis, two had pulmonary atresia, and four had a restrictive ventricular septal defect at the time of the operation. Two had multiple ventricular septal defects. Seven had undergone one (n = 5) or two (n = 2) previous modified Blalock-Taussig shunts. All patients underwent a total correction with left ventricular-aortic intraventricular connection (four needed a ventricular septal defect enlargement), connection between the right ventricle and pulmonary arteries with a tubular segment of autograft aorta, without the Lecompte maneuver (anterior location of the bifurcation of the pulmonary arteries) on the right (n = 6) or the left (n = 4) of the aorta. No valvular device was used for the right ventricular outflow repair. RESULTS: No early or late deaths occurred. One patient with multiple ventricular septal defects needed an early (2 weeks) reoperation for a residual muscular ventricular septal defect. All patients are currently in New York Heart. Association class I, without medications, in sinus rhythm, at a mean follow-up of 30 months. Late results up to 3.6 years show no calcification on the chest roentgenogram, and at the most recent echocardiogram, right ventricular pressures were low (25 to 40 mm Hg, mean 33 mm Hg) and no significant gradient (over 10 mm Hg) was found between the right ventricle and pulmonary arteries. Left and right ventricular function was satisfactory. CONCLUSION: This modification of the Lecompte operation using a segment of autograft allows an excellent early and late result, with no danger of compression of anteriorly placed pulmonary arteries, no significant right ventricular outflow obstruction, and normal appearance of the tubular autograft. In view of laboratory and clinical evidence, normal growth of the autograft can be anticipated. It allows an elective correction of transposition, ventricular septal defect, and left ventricular outflow tract obstruction without a previous Blalock-Taussig shunt (three patients) and correction at a young age (three patients younger than 1 year).  相似文献   

9.
OBJECTIVE: The ideal substitute for the treatment of ventricle-pulmonary artery discontinuity remains a topic of controversy, because of calcifications and degeneration of biologic substitutes leading to subsequent reoperations. Because polyurethane valves used in ventricular assist devices show a satisfactory biocompatibility, the aim of this study was to evaluate a valved conduit composed of a Dacron graft incorporating a trileaflet 25 mm polyurethane valve. METHODS: The conduit was implanted between the right ventricle and the main pulmonary artery in adult sheep, with ligation of the proximal pulmonary artery. The animals received no medications. Serial hemodynamic data were collected at the time of implantation and at postoperative intervals of 6 and 12 months. RESULTS: The peak pressure gradient across the valve increased significantly between implantation (0.17 +/- 5.6 mm Hg) and 6 months after operation (7.3 +/- 3 mm Hg, p = 0.0007) and remained stable thereafter (6.7 +/- 3 mm Hg at 12 months), whereas the cardiac output remained unchanged (4.6 +/- 0.6 L/min at implantation, 4 +/- 0.6 L/min at 6 months, and 3.9 +/- 1.1 L/min at 12 months). At the completion of the study, valve samples were processed and vapor coated with carbon for microscopic examination. There was one instance of nonadherent thrombus formation inside a cusp but no structural failures. The other valves were free of calcium deposits and no significant amounts of phosphorus could be detected by scanning electron microscopy and energy dispersive spectrometry. CONCLUSIONS: These data demonstrate the good hemodynamic performance, low thrombogenicity, and acceptable durability of the polyurethane valves implanted in the right side of the heart in a chronic sheep model.  相似文献   

10.
BACKGROUND: Although cardiomyoplasty (CMP) is thought to improve ventricular systolic function, its effects on ventricular diastolic function are not clear. Especially the effects on right ventricular diastolic filling have not been fully investigated. Because pericardial influences are more pronounced in the right ventricle than in the left ventricle, CMP with its external constraint may substantially impair right ventricular diastolic filling. METHODS: Fourteen purebred adult beagles were used in this study. Seven underwent left posterior CMP, and 7 underwent a sham operation with a pericardiotomy and served as controls. Four weeks later, the hemodynamic effects of CMP were evaluated by heart catheterization before and after volume loading (central venous infusion of 10 mg/kg of 4.5% albumin solution for 5 minutes). RESULTS: In the CMP group, mean right atrial pressure and right ventricular end-diastolic pressure increased significantly from 3.1 +/- 1.2 mm Hg to 6.1 +/- 2.0 mm Hg (p < 0.001) and from 4.0 +/- 1.8 mm Hg to 9.6 +/- 2.5 mm Hg (p < 0.001), respectively. Volume loading in the control group did not significantly increase either variable. Right ventricular end-diastolic volume and stroke volume did not change significantly (from 53 +/- 9.3 mL to 60 +/- 9.0 mL and from 20 +/- 2.3 mL to 21 +/- 3.2 mL, respectively) in the CMP group. In the control group, however, right ventricular end-diastolic volume and stroke volume increased significantly from 45 +/- 7.7 mL to 63 +/- 14 mL (p < 0.05) and from 18 +/- 4.3 mL to 22 +/- 4.2 mL (p < 0.05), respectively. CONCLUSIONS: These results suggest that CMP may reduce right ventricular compliance and restrict right ventricular diastolic filling in response to rapid volume loading because of its external constraint.  相似文献   

11.
OBJECTIVES: The aim of this study was to assess the potential acute benefit of multisite cardiac pacing with optimized atrioventricular synchrony and simultaneous biventricular pacing in patients with drug-refractory congestive heart failure (CHF). BACKGROUND: Prognosis and quality of life in severe CHF are poor. Various nonpharmacological therapies have been evaluated but are restricted in their effectiveness and applications. In the early 1990s, dual chamber pacing (DDD) pacing was proposed as primary treatment of refractory CHF but results were controversial. Recently, tests to evaluate the effect of simultaneous pacing of both ventricles have elicited a significant improvement of cardiac performance. METHODS: Acute hemodynamic study was conducted in 18 patients with severe CHF (New York Heart Association class III and IV) and major intraventricular conduction block (IVCB) (QRS duration = 170+/-37 ms). Using a Swan-Ganz catheter, pulmonary artery pressure, pulmonary capillary wedge pressure (PCWP) and cardiac index (CI) were measured in different pacing configurations: atrial pacing (AAI) mode, used as reference, single-site right ventricular DDD pacing and biventricular pacing with the right ventricular lead placed either at the apex or at the outflow tract. RESULTS: The CI was significantly increased by biventricular pacing in comparison with AAI or right ventricular (RV). DDD pacing (2.7+/-0.7 vs. 2+/-0.5 and 2.4+/-0.6 l/min/m2, p < 0.001). The PCWP also decreased significantly during biventricular pacing, compared with AAI (22+/-8 vs. 27+/-9 mm Hg; p < 0.001). CONCLUSIONS: This acute hemodynamic study demonstrated that biventricular DDD pacing may significantly improve cardiac performance in patients with IVCB and with severe heart failure, in comparison with intrinsic conduction and single-site RV DDD pacing.  相似文献   

12.
Patients with early symptomatic mitral stenosis usually suffer from pulmonary congestion on the basis of left atrial and pulmonary venous hypertension. They are often in sinus rhythm, and cardiac output is usually well maintained. Symptoms occur most often when heart rate, cardiac output, or both are increased. In this study, intravenous propranolol administered to patients with pure mitral stenosis in sinus rhythm resulted in significant reductions in mitral diastolic gradient (-7.1 mm. Hg +/- 1.6 SED), mean pulmonary wedge pressure (--6.9 mm. Hg +/- 1.2) and mean pulmonary artery pressures (--9.0 mm. Hg +/- 1.2). This was due to simultaneous reduction of heart rate (--13.0 beats/minute +/- 2.6 and cardiac output (--0.5 L./minute +/- 0.2). A small associated reduction of left ventricular systolic pressure (--5.1 mm. Hg +/- 2.6) was not accompanied by adverse clinical effects. A potential role for propranolol in medical management of pure mitral stenosis in the presence of sinus rhythm is suggested.  相似文献   

13.
A novel pressure gated tidal flow extracorporeal circulation (TF ECC) device was developed, and it was hypothesized that it could provide total respiratory support in apneic adult sheep without adverse hemodynamic or cardiac effects. The circuit consisted of a single lumen cannula, computer driven tubing occluders gated by circuit pressure, a nonocclusive peristaltic blood pump, a spiral coiled membrane lung, and a heat exchanger. Six paralyzed, anesthetized adult sheep were instrumented and TF ECC was instituted via cannulation of the right atrium. Total respiratory support was provided by the circuit during an apneic period of 6 hours. Echocardiography was performed with the animal instrumented (baseline) and after 2 hours of TF ECC. Circuit blood tidal volume was 172.6 +/- 18.0 cc, resulting in a TF ECC flow of 71.1 +/- 10.1 cc/kg/min. At the end of the study period, PaCO2 was 35.5 +/- 7.6 mmHg, paO2) was 91.2 +/- 30.6 mmHg, and pulmonary artery oxygen saturation (SPAO2) was 95 +/- 5%. Hemodynamic stability was maintained with no significant differences at baseline and after 6 hours in mean arterial pressure, mean pulmonary artery pressure, or heart rate noted. Echocardiographic evaluation showed preserved fractional shortening of the left ventricular (LV) septal-lateral dimension (baseline 32.4 +/- 11.4%; 2 hours 34.8 +/- 8.4%). This study demonstrates TF ECC provides total respiratory support without adverse hemodynamic effects, and preserved LV function.  相似文献   

14.
BACKGROUND: During airway pressure release ventilation (APRV), tidal ventilation occurs between the increased lung volume established by the application of continuous positive airway pressure (CPAP) and the relaxation volume of the respiratory system. Concern has been expressed that release of CPAP may cause unstable alveoli to collapse and not reinflate when airway pressure is restored. OBJECTIVE: To compare pulmonary mechanics and oxygenation in animals with acute lung injury during CPAP with and without APRV. DESIGN: Experimental, subject-controlled, randomized crossover investigation. SETTING: Anesthesiology research laboratory, University of South Florida College of Medicine Health Sciences Center. SUBJECTS: Ten pigs of either sex. INTERVENTIONS: Acute lung injury was induced with an intravenous infusion of oleic acid (72 micrograms/kg) followed by randomly alternated 60-min trials of CPAP with and without APRV. Continuous positive airway pressure was titrated to produce an arterial oxyhemoglobin saturation of at least 95% (FIO2 = 0.21). Airway pressure release ventilation was arbitrarily cycled to atmospheric pressure 10 times per minute with a release time titrated to coincide with attainment of respiratory system relaxation volume. MEASUREMENTS: Cardiac output, arterial and mixed venous pH, blood gas tensions, hemoglobin concentration and oxyhemoglobin saturation, central venous pressure, pulmonary and systemic artery pressures, pulmonary artery occlusion pressure, airway gas flow, airway pressure, and pleural pressure were measured. Tidal volume (VT), dynamic lung compliance, intrapulmonary venous admixture, pulmonary vascular resistance, systemic vascular resistance, oxygen delivery, oxygen consumption, and oxygen extraction ratio were calculated. MAIN RESULTS: Central venous infusion of oleic acid reduced PaO2 from 94 +/- 4 mm Hg to 52 +/- 9 mm Hg (mean +/- 1 SD) (p < 0.001) and dynamic lung compliance from 40 +/- 6 mL/cm H2O to 20 +/- 6 mL/cm H2O (p = 0.002) and increased venous admixture from 13 +/- 3% to 32 +/- 7% (p < 0.001) in ten swine weighing 33.3 +/- 4.1 kg while they were spontaneously breathing room air. After induction of lung injury, the swine received CPAP (14.7 +/- 3.3 cm H2O) with or without APRV at 10 breaths per minute with a release time of 1.1 +/- 0.2 s. Although mean transpulmonary pressure was significantly greater during CPAP (11.7 +/- 3.3 cm H2O) vs APRV (9.4 +/- 3.8 cm H2O) (p < 0.001), there were no differences in hemodynamic variables. PaCO2 was decreased and pHa was increased during APRV vs CPAP (p = 0.003 and p = 0.005). PaO2 declined from 83 +/- 4 mm Hg to 79 +/- 4 mm Hg (p = 0.004) during APRV, but arterial oxyhemoglobin saturation (96.6 +/- 1.4% vs 96.9 +/- 1.3%) did not. Intrapulmonary venous admixture (9 +/- 3% vs 11 +/- 5%) and oxygen delivery (469 +/- 67 mL/min vs 479 +/- 66 mL/min) were not altered. After treatment periods and removal of CPAP for 60 min, PaO2 and intrapulmonary venous admixture returned to baseline values. DISCUSSION: Intrapulmonary venous admixture, arterial oxyhemoglobin saturation, and oxygen delivery were maintained by APRV at levels induced by CPAP despite the presence of unstable alveoli. Decrease in PaO2 was caused by increase in pHa and decrease in PaCO2, not by deterioration of pulmonary function. We conclude that periodic decrease of airway pressure created by APRV does not cause significant deterioration in oxygenation or lung mechanics.  相似文献   

15.
STUDY OBJECTIVES: Pulmonary hypertension is the most important complication in patients with atrial septal defect (ASD), but its role in limiting exercise has not been examined. This study sought to evaluate exercise performance in adults with ASD and determine the contribution of elevated pulmonary artery pressure in limiting exercise capacity. DESIGN: We used Doppler echocardiography during exercise in 10 adults (aged 34 to 70 years) with isolated ASD (New York Heart Association class I, II) and an equal number of matched control subjects. Incremental exercise was performed on an electrically braked upright cycle ergometer. Expired gases and VE were measured breath-by-breath. Two-dimensional and Doppler echocardiographic images were obtained at rest prior to exercise to determine ASD size, stroke volume (SV), shunt ratio (Qp:Qs), right ventricular outflow tract (RVOT) size, and right ventricular systolic pressure at rest (RVSPr). Doppler echocardiography was repeated at peak exercise to measure right ventricular systolic pressure during exercise (RVSPex). RESULTS: Resting echocardiography revealed that RVOT was larger (21+/-4 vs 35+/-8 mm, mean+/-SD; p=0.0009) and RVSPr tended to be higher (17+/-8 vs 31+/-8 mm Hg; p=0.08) in ASD; however, left ventricular SV was not different (64+/-23 vs 58+/-23 mL; p>0.05), compared with control subjects. Despite normal resting left ventricular function, ASD patients had a significant reduction in maximum oxygen uptake (VO2max) (22.9+/-5.4 vs 17.3+/-4.2 mL/kg/min; p=0.005). RVSPex was higher (19+/-8 vs 51+/-10 mm Hg; p=0.001) and the mean RVSP-VO2 slope (1+/-2 vs 18+/-3 mm Hg/L/min; p=0.003) and intercept (17+/-4 vs 27+/-4 mm Hg; p=0.05) were higher in the ASD group. VO2max correlated inversely with both RVSPr (r=-0.69; p=0.007) and RVSPex (r=-0.67; p=0.01). CONCLUSION: These findings suggest that adults with ASD have reduced exercise performance, which may be associated with an abnormal increase in pulmonary artery pressure during exercise.  相似文献   

16.
BACKGROUND: Right ventricular failure after cardiac transplantation is commonly related to preexisting recipient pulmonary hypertension. This study was designed to investigate the effects of intravenous milrinone on pulmonary hemodynamic indices and right ventricular function in a canine model of monocrotaline pyrrole-induced chronic pulmonary hypertension. METHODS: Eight mongrel dogs underwent pulmonary artery catheterization to measure right-sided hemodynamic indices before and 6 weeks after a right atrial injection of monocrotaline pyrrole. Six weeks after injection, all hearts were instrumented with a pulmonary artery flow probe, ultrasonic dimension transducers, and micromanometers. Data were collected at baseline and after milrinone infusion. RESULTS: Six weeks after monocrotaline pyrrole injection, significant increases in the pulmonary artery pressure and pulmonary vascular resistance were observed. Milrinone led to significant increases in right ventricular function as well as significant improvements in pulmonary vascular resistance, pulmonary blood flow, and left ventricular filling. CONCLUSIONS: This investigation demonstrates the well-known hemodynamic and inotropic effects of milrinone which, in the setting of monocrotaline pyrrole-induced pulmonary hypertension, were also associated with significant increases in pulmonary blood flow and left ventricular filling.  相似文献   

17.
BACKGROUND: Elevated airway pressures during mechanical ventilation are associated with hemodynamic compromise and pulmonary barotrauma. We studied the cardiopulmonary effects of a pressure-limited mode of ventilation (airway pressure release ventilation) in patients with the adult respiratory distress syndrome. METHODS: Fifteen patients requiring intermittent mandatory ventilation (IMV) and positive end-expiratory pressure (PEEP) were studied. Following measurement of hemodynamic and ventilatory data, all patients were placed on airway pressure release ventilation (APRV). Cardiorespiratory measurements were repeated after a 2-hour stabilization period. RESULTS: During ventilatory support with APRV, peak inspiratory pressure (62 +/- 10 vs 30 +/- 4 cm H2O) and PEEP (11 +/- 4 vs 7 +/- 2 cm H2O) were reduced compared with IMV. Mean airway pressure was higher with APRV (18 +/- 5 vs 24 +/- 4 cm H2O). There were no statistically significant differences in gas exchange or hemodynamic variables. Both cardiac output (8.7 +/- 1.8 vs 8.4 +/- 2.0 L/min) and partial pressure of oxygen in arterial blood (79 +/- 9 vs 86 +/- 11 mm Hg) were essentially unchanged. CONCLUSIONS: Our results suggest that while airway pressure release ventilation can provide similar oxygenation and ventilation at lower peak and end-expiratory pressures, this offers no hemodynamic advantages.  相似文献   

18.
BACKGROUND: The mechanism of atrial natriuretic peptide (ANP) release has been difficult to demonstrate in patient studies because of inaccuracies in measuring atrial volumes using conventional techniques. METHODS: Magnetic resonance imaging was performed in 28 clinically stable patients (New York Heart Association class 3) with chronic heart failure to determine right atrial (RA), left atrial (LA), and ventricular volumes. In addition, right heart catheterization was serially performed and plasma ANP levels (in picograms per milliliter) were drawn from the right atrium. RESULTS: Five patients had to be excluded from data analysis for technical reasons. The remaining 23 patients had the following hemodynamic measurements (mean +/- SD): RA mean pressure 7+/-5 mm Hg, pulmonary artery mean pressure 28+/-10, pulmonary capillary wedge pressure 21+/-8 mm Hg, and cardiac index 2.9+/-1.4 (L/min/m2), respectively. Plasma ANP levels were significantly elevated at 162+/-117 (normal range 20 to 65 pg/ml, p < 0.05), as were LA and RA volumes compared with healthy controls (RA volume 128+/-64 ml vs 82+/-25 ml, p < 0.05; LA volume 157+/-54 ml vs 71+/-24 ml, p < 0.01, respectively). ANP showed a stronger relation with atrial volumes (RA volume, r = 0.91, p = 0.0001; LA volume, r = 0.80, p = 0.001) than with atrial pressures (RA mean pressure, r = 0.45, p = 0.03; pulmonary capillary wedge pressure, r = 0.67, p = 0.001). A subgroup analysis of patients with increased RA or LA volumes (>1 SD of mean of controls) revealed a stronger relation between ANP and RA volumes than between ANP and LA volumes. CONCLUSIONS: These data suggest that increased right heart volume with subsequent increased atrial stretch is the major determinant for ANP release in patients with stable CHF.  相似文献   

19.
OBJECTIVES: (1) To compare left ventricular stroke work index (SW) and left ventricular power output (LVP), hemodynamic variables that encompass blood pressure as well as blood flow, with the purely flow-derived hemodynamic and oxygen transport variables as markers of perfusion and outcome in critically injured patients during resuscitation. (2) To use the ventricular pressure-volume diagram to define characteristic hemodynamic patterns in the determinants of SW and LVP that are associated with survival. METHODS: This was a cohort study at a university Level I trauma center during the course of 1 year. A consecutive series of patients was monitored with a volumetric pulmonary artery catheter during the initial 48 hours of resuscitation. Heart rate, SW, LVP, cardiac index, and oxygen delivery and consumption during resuscitation were compared using multivariate logistic regression analysis with regard to the ability to clear lactate in less than 24 hours and survival. Receiver operating characteristic curves were constructed to determine threshold values for SW and LVP. Ventricular pressure-volume diagrams were used to describe characteristic patterns in the determinants of SW and LVP in survivors and nonsurvivors. Preload was expressed as left ventricular end-diastolic volume index, afterload as aortic input impedance (Ea), and contractility as ventricular end-systolic elastance (Ees). The ratio of Ea/Ees (RATIO) was used as a measure of ventricular-arterial coupling, which describes the efficacy of energy transfer from the heart to the vascular system. RESULTS: One hundred eleven patients (87 survivors, 24 nonsurvivors) met study criteria. Survivors had a significantly higher SW (4,510 +/- 1,070 vs. 3,440 +/- 980 mm Hg x mL x m(-2); p < 0.0001) and LVP (370 +/- 94 vs. 270 +/- 81 mm Hg x L x min(-2) x m(-2); p < 0.0001) than nonsurvivors. Heart rate, SW, and LVP were the only studied variables that were significantly related to lactate clearance and survival by logistic regression. Threshold values determined by the receiver operating characteristic curves were 4,000 mm Hg x mL x m(-2) for SW and 320 mm Hg x L x min(-1) x m(-2) for LVP. Survivors had better ventricular-arterial coupling than nonsurvivors, indicated by a lower RATIO (0.32 +/- 0.22 vs. 0.54 +/- 0.38; p = 0.003). This lower RATIO was attributable to lower levels of Ea (2.7 +/- 0.7 vs. 3.4 +/- 0.8 mm Hg x mL(-1) x m(-2); p = 0.0003) and a trend toward higher levels of Ees (13 +/- 11 vs. 9.9 +/- 7.3 mm Hg x mL(-1) x m(-2); p = 0.12). CONCLUSION: Thermodynamic perfusion variables that encompass both pressure and flow, such as SW and LVP, are more closely related to perfusion and outcome than the purely flow-derived variables. The higher SW and LVP in survivors is related to better ventricular-arterial coupling, and therefore more efficient cardiac function. Cutoff values for LVP of 320 mm Hg x L x min(-1) x m(-2) and for SW of 4,000 mm Hg x mL x m(-2) may be useful thresholds for evaluating hemodynamic performance during resuscitation.  相似文献   

20.
This prospective, longitudinal study was designed to assess the hemodynamic changes occurring in patients who undergo lung volume reduction surgery (LVRS). Patients with emphysema treated with LVRS underwent hemodynamic evaluation before and after surgery. The study group consisted of nine patients with an average age of 64.4 yr. FEV1 rose significantly from 0.64 preoperatively to 0.99 L postoperatively. After surgery, pulmonary artery (PA) systolic pressure rose to 47.9 +/- 12.4 mm Hg, meeting criteria for development of pulmonary hypertension. In six patients, the elevation in PA pressure was attributed to an increase in the pulmonary vascular resistance, but for all nine patients the change was not statistically significant. The pulmonary artery occulsion pressure (PAOP) did not change postoperatively. There was no correlation of PAOP with global left ventricular ejection fraction. While preoperatively there was a negative correlation between symptoms (Mahler dyspnea index) and PA pressure, after surgery the change in PA pressures did not correlate with the change in symptoms (Mahler transitional dyspnea index). We concluded that development of pulmonary hypertension may occur after LVRS in patients whose symptomatic status improves and in whom this condition was not present preoperatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号